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Invasion percolation with memory
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~Received 15 November 1996; revised manuscript received 30 January 1997!

Motivated by the problem of finding the minimum threshold path~MTP! in a lattice of elements with
random thresholdst i , we propose a new class of invasion processes, in which the front advances by mini-
mizing or maximizing the measureSn5( it i

n for real n. This rule assigns long-time memory to the invasion
process. If the rule minimizesSn ~case of minimum penalty!, the fronts are stable and connected to invasion
percolation in a gradient@J. P. Hulin, E. Clement, C. Baudet, J. F. Gouyet, and M. Rosso, Phys. Rev. Lett.61,
333 ~1988!# but in a correlated lattice, with invasion percolation@D. Wilkinson and J. F. Willemsen, J. Phys.
A 16, 3365~1983!# recovered in the limitunu5`. For smalln, the MTP is shown to be related to the optimal
path of the directed polymer in random media~DPRM! problem@T. Halpin-Healy and Y.-C. Zhang, Phys. Rep.
254, 215 ~1995!#. In the largen limit, however, it reduces to the backbone of a mixed site-bond percolation
cluster. The algorithm allows for various properties of the MTP and the DPRM to be studied. In the unstable
case~case of maximum gain!, the front is a self-avoiding random walk.@S1063-651X~97!08805-3#

PACS number~s!: 47.55.Mh, 64.60.Ak, 05.40.1j
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I. INTRODUCTION

Many processes of practical interest involve disorde
media or lattices of elements with randomly distribut
thresholdst i.0. The typical problem consists of the app
cation of an overall difference in potential~or in pressure in
the case of fluid flow in porous media!, DF, across opposite
ends of a lattice~or of the pore network representing th
porous medium!. A lattice element remains closed to tran
port if the local potential difference is smaller than its thres
old Df i,t i , but becomes open in the opposite caseDf i
.t i . In these problems, a quantity of significant interest
the minimum overall threshold,DFmin , or, equivalently, the
minimum gradient

u¹Fumin~L ![
( it i
L

~1!

at which a path of open elements first forms. In the abo
the sum is over the minimum threshold path~MTP!, which is
unknown and must also be determined. The problem ty
cally arises in networks of diodes@1#, in the flow of Bingham
plastics in porous media@2#, and in the mobilization of
foams in porous media@3#. In a more general context, wher
each threshold is viewed as a penalty@3#, it is a problem of
determining the minimum overall penalty~a problem in glo-
bal optimization!.

Rouxet al. @1# studied aspects of this problem in the co
text of a network of diodes, by considering two differe
cases, one in which the path is directed~no backtracking
allowed! and one in which it is not. They suggested th
u¹Fumin is akin to a percolation threshold and studied
dependence on the lattice sizeL. Their findings showed
finite-size scaling similar to directed percolation~DP! or or-
dinary percolation~OP!, respectively, from which they con
cluded that the onset of connectivity in this problem is of t
same universality class as percolation. Using numer
551063-651X/97/55~6!/7177~15!/$10.00
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simulations in two-dimensional~2D! lattices of thresholds
uniformly distributed in ~0,1!, they further estimated
u¹Fumin(`)50.231 andu¹Fumin(`)50.227 for the directed
and nondirected cases, respectively. They also made the
interesting observation that the two problems of the onse
conduction in a lattice of thresholds and percolation, ough
be connected, as their respective thresholds are special c
of the more general expression

Ln5minS ( it i
n

L D 1/n ~2!

with n51 corresponding to the threshold-lattice proble
andunu5` to OP. Additional information on the MTP or on
its connection to percolation, was not provided, however

Sahimi @2# provided estimates ofu¹Fumin(`) and conjec-
tured that the MTP has the same scaling properties as
well-studied minimum pathlmin of a percolation cluster. The
latter ~also known as the chemical distance! denotes the path
on the percolation cluster with the minimum total length~or
tortuosity!. It is known to be a self-similar fractal@4#, scaling
as l;LDmin, whereDmin is equal to 1.13 in 2D and 1.34 in
3D. Rossen and Mamun@3# proceeded along similar line
and proposed a percolation approach for the MTP, consis
of occupying lattice elements with progressively high
thresholds. Although commenting that such a process is
tually only an approximation, they also identified the MT
with the minimum pathlmin of the percolation cluster thu
obtained.

Closely related to the above is the problem of a direc
polymer in random media~DPRM! ~see@5# and references
therein!. Here, a well-studied version involves a direct
~stretched! polymer in a square lattice with one end anchor
at the origin~x50, y50!, which is allowed to move in dis-
crete steps along the two directionsx and y, subject to the
7177 © 1997 The American Physical Society
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7178 55HOOSHANG KHARABAF AND YANIS C. YORTSOS
constraintuy(x11)2y(x)u50 or 1, and that the polyme
cannot turn back in thex direction~overhangs not allowed!.
An energy coste randomly distributed, is associated wi
every step. The objective is to find the configuration th
minimizes the total energy. This problem was mapped to
celebrated Kardar-Parisi-Zhang~KPZ! equation ~see @6#!,
which is known to give rise to self-affine fractals, and is a
connected to the more general problem of interface gro
and surface roughening~for example, wetting in porous me
dia, burning of paper, etc.! which also lead to self-affine
fractals. As the MTP and DPRM problems both involve t
minimization of a global quantity, we expect that they al
would be closely related.

At present, a firm connection of the lattice-threshold pro
lem to percolation appears to be lacking. In particular,
relation of the MTP to the minimum path of percolation, if
indeed exists, is not self-evident. The latter pertains to
minimum sum of equal length segments on the OP clus
while the former is the minimum sum of distributed thres
olds in a regular lattice. Understanding this connection for
the main objective of this paper. We present a new algorit
for the construction of the MTP, based on which its prop
ties can be studied. The novelty of the algorithm is tha
requires the simulation of an invasion process, similar
invasion percolation~IP!, except that here the rules for th
front advance depend on the front history, as explained
low. In implementing this algorithm, and in conjuction wit
the remark in Ref.@1#, however, we realized that the MT
problem can benefit from the study of more general invas
processes, in which the front advances by minimizing~or
maximizing! the general measure

Sn5(
i

t i
n ~3!

for n real, and where the sum is over any path connec
any site at the front to the inlet boundary. As these invo
the entire history of the process, we will refer to them
invasion percolation with memory~IPM!. Both the nondi-
rected and the directed problems are considered.

In the nondirected case, the properties of invasion an
the generalized MTP, over whichSn is minimal, are studied
It is shown that the process of minimizingSn is related to
invasion percolation in a gradient~IPG! @7#, but in a corre-
lated lattice, from which it is inferred that the invasion fron
are rough, but not self-similar at all scales. A connection
the MTP to the backbone of a mixed site-bond percolat
cluster~obtained in the limitunu5`) is, next, established. In
the directed case, the IPM algorithm allows for a generali
tion of the DPRM problem to arbitrary values ofn and
shows that the optimal path of the latter approaches the b
bone of the mixed site-bond directed percolation cluster.
note in advance that an important difference between
approach and the conventional one is that here we iden
the optimum configuration between any two curves~namely,
the polymer can originate from any point on a given cur
and not from the origin only!. Forn51, the optimum path in
the DPRM problem and the MTP are found to be very sim
lar, although not identical, based on which we conjecture
the MTP in the smalln limit is also self-affine. The identi-
fication ~opening! of paths of higher energy, as the applie
t
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potential difference exceeds the minimum value, is brie
studied. Finally, for the sake of generalization, we also c
sider the case of maximizingSn ~maximum gain!, where, in
the presence of a trapping rule, the front is shown to b
self-avoiding random walk~SAW!.

Before we proceed, we note that the consideration of
various moments oft is equivalent to considering distribu
tions of new thresholdsh5tn, with probability density func-
tion ~PDF!, arithmetic mean and standard deviation equa

f ~h!5
1

unu
h~1/n!21, ^h&5

1

n11
, sh5

n

~11n!A112n
,

~4!

respectively. For the more general problem of finding t
MTP of arbitrary threshold distributions, we expect a rou
analogy between patterns with the same ratio of stand
deviation to arithmetic meanm[sh/^h&, which for the
present case readsm5n/A112n. Thus, we anticipate tha
the results for large or smalln would be analogous to thos
for processes with arbitrary threshold distributions and la
or smallm, respectively. From Eq.~4!, it is apparent that for
the existence of the arithmetic mean we must haven.21,
while for that of the variance,n.21/2. Therefore, for finite
first and second moments of general threshold distributio
we must restrict Eq.~3! to n.21/2. However, some result
for smallern ~which formally correspond to Levy flights@8#!
will also be presented~see Kharabaf@9# for more details!.
We note that the DPRM problem with the PDF of Eq.~4!
andn in the range~21/2,0! was singled out as a special ca
by Marconi and Zhang@8# who found that, in that range, th
meandering growth exponent varies withn.

The paper is organized as follows. First, the basic rules
the algorithm and the construction of the MTP are presen
The process is generalized to arbitraryn and it is shown that
it reduces to IP in the two limitsn→6`. Then we discuss
the application of the same algorithm to the solution o
simple version of the DPRM problem. IPM is subsequen
shown to be related to IPG in a correlated lattice, where
appropriate Bond number is defined. Based on this analo
the properties of the invasion fronts are elucidated. Fr
these two relations to DPRM and IPG, it is suggested that
invasion fronts and the corresponding MTPs of IPM are g
erally rough, reducing to self-similar fractals only in the lim
unu5`. Various properties of the fronts and the MTP a
studied. Then, the properties of higher-energy paths as
applied potential difference increases above its minim
value, are briefly discussed. Finally, we present an exten
of the IPM process to the destabilizing case, whereSn is
maximized and where the front is shown to reduce to
SAW.

II. IPM PROCESSES

Invasion algorithm

Consider an invasion process from right to left in a latti
of sites and bonds. Invader and defender reside on the
of the lattice. The bonds have thresholdst i , randomly as-
signed from a uniform distribution in~0,1!. The invading
front advances one site at a time following rules to be
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55 7179INVASION PERCOLATION WITH MEMORY
scribed below. Because both sites and bonds are invol
this problem is actually a mixed site-bond problem, which
prototypical of fluid displacements in porous media@10#. The
rule for the front advance is as follows: Denote byF an
arbitrary site currently on the front, byF8 one of its~nearest-
neighbor! perimeter sites in the defender region@Fig. 1~a!#
~where a 2D square lattice is used!, by FG the site from
which invasion will actually proceed next, and byFG8 the
perimeter site to which the front advances during the n
step @Fig. 1~b!#. A value Vn(F) is recursively assigned to
every siteF on the front~hence, to all sites that have bee
invaded!, through the following algorithm.

Let tFF8 denote the threshold connecting siteF with one
of its perimeter sitesF8, and form the sum

Sn,FF85Vn~F !1tFF8
n . ~5!

Then, the threshold to be invaded next will connect the t
sites, a ‘‘growth’’ siteFG and the site to be occupied nex
FG

8 , for whichSn,FF8 is minimum. We point out that in ou
terminology, the term growth site has a different mean
from that of Roux and Guyon@11#. Having made this deter
mination, siteFG is identified, the front advances toFG8 , the
assignment

Vn~FG8 !5Vn~FG!1tFGFG8
n

~6!

is subsequently made and the process is repeated. In
way, and by using the initial conditionV1(R)50 for all sites
R on the initial interface~which here is the right boundary

FIG. 1. Description of the invasion rules, before~a! and after~b!
a growth step. Invasion occurs from right to left.F denotes a front
site, F8 a perimeter site,FG is a growth site andFG8 is the site
occupied next. The process is site-occupancy bond-invasion pe
lation.
d,
s

t

o

g

his

but could be any other curve! ~Fig. 1!, all invaded sites are
assigned a unique valueVn . In contrast to IP, where the
front advances by the local rule of selecting the smallest~or
largest! available threshold, here the advance depends on
past history, thus imparting to the process a long-ti
memory. Through this algorithm, it is straightforward
show that the valueVn(A), assigned to every invaded sit
A, actually represents the minimum sum of thresho
among all paths that connectA to the right boundary~see
Appendix A!. The corresponding minimum path fromA to
the injection ~initial! side can be easily identified, as di
cussed below.

Typical snapshots of the occupied sites and of the co
sponding MTP forn51 in a 2D square lattice are shown
Fig. 2 at different stages of invasion@Figs. 2~a!–2~c!#. Both
the front and the MTP have the appearance of rough but
self-similar curves. The MTP across the lattice can be
rectly identified when the front first reaches the left-ha
side ~LHS! boundary @at ‘‘breakthrough,’’ site L* , Fig.
2~c!#. It can be traced recursively, by starting fromL* , pro-
ceeding in the direction of decreasingVn and identifying the
next siteP that belongs to the path, and neighbors a s
P8 already on this path@Fig. 2~d!#, by requiring that the
conditionVn(P8)5Vn(P)1tPP8

n , be identically satisfied. A
similar procedure is used to find the minimum paths~from
the current front location to the right boudary! during the
different stages of invasion@Figs. 2~a!–2~b!#, as well as the
MTP originating from any invaded siteA. These paths are
not necessarily subsets of the MTP.

In the simulations shown in Fig. 2, a trapping rule simil

o-

FIG. 2. Snapshots of the invasion process~occupied sites in
gray! and of the MTP at different stages of invasion~a!–~c! for n
51 in a 1003100 square lattice. Periodic boundary conditions we
used. L* denotes the site at ‘‘front breakthrough’’ on the le
boundary.~d! shows the terminology used to identify the MTP
Note that the MTP at different stages is not necessarily a subs
the final MTP.
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FIG. 3. Invasion fronts at ‘‘breakthrough’
and corresponding MTPs in a 1003100 lattice,
for n50 ~a!, n50.5 ~b!, n53 ~c!, n510 ~d!, n
5100 ~e!. Pattern ~f! is invasion percolation,
where the front advances by penetrating the bo
with the smallest threshold. Pattern~g! is for n
5210, pattern~h! for n52100, and pattern~i!
corresponds to invasion percolation, where t
front advances by penetrating the bond with t
largest threshold. Note the similarity of~e! with
~f! and of ~h! with ~i!. Fronts become more self
similar, and the fraction of trapped sites increas
~MTPs are more tortuous! asn increases.
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to invasion fercolation with trapping~IPT! @12# was applied,
such that a trapped site cannot be invaded. Thus, in the
vaded region, there exist closed regions, the sites of wh
have not been visited~Fig. 2!. However, this does not affec
the values ofVn or the minimum path, as any paths th
traverse trapped regions cannot, by construction, be m
mum paths. In the cases shown in Fig. 2, the number den
of the trapped regions is high, although their size is sm
We must point out, however, that by relaxing the trapp
rule, and by continuing the invasion process following bre
through, all sites of the lattice can be invaded.

Because the functionV1 is taken to be single valued,
site cannot be invaded more than once, hence a noninv
bond between two adjacent sites at the front, such asF and
FG in Fig. 1, cannot become open in any subsequent ste~it
is trapped!. This has the following consequences:~i! Be-
tween any invaded siteA and the right boundary there is on
and only one self-avoiding path occupied by invaded si
By construction~see Appendix A!, this path is the MTP from
A to the boundary.~ii ! Because of this absence of reconne
tions, all invaded sites belong to distinct dendritic branch
which originate from the right boundary, but, otherwise,
not intersect one another~see also below!. ~iii ! Depending on
the coordination numberZ of the lattice, an occupied site ca
be the growth site for two or more branches, but cannot
the termination point of two branches.

The IPM algorithm bears some relation with the ‘‘burnin
trees’’ algorithm of Herrmannet al. @13# for obtaining infor-
mation on the backbone and other properties of the perc
tion cluster, and to the matrix transfer algorithm used in
DPRM problem. In the former, a process mimicking inv
sion in a percolation cluster is considered and invaded s
are labelled sequentially using consecutively increasing i
n-
h

i-
ity
l.

-

ed

s.

-
s

e

la-
e

es
e-

gers. However, the IPM algorithm is more general. T
‘‘burning trees’’ algorithm results as a special case of t
IPM problem if the invasion is restricted to a percolatio
cluster only, all thresholds take the same value, and a s
dard invasion percolation rule is taken for the invading fro
The matrix transfer algorithm can also be obtained as a s
cial case of IPM if the invasion is initiated from a sing
point only. We also mention an alternative but rather cu
bersome algorithm, also employed in MTP, which involv
solving the Laplace equation in the original lattice, using
applied potential difference sufficiently large for all elemen
to be open to conduction and incrementally reducing the
tential until flow ceases, at which point the minimum pre
sure gradient is identified@2#.

Patterns

Typical patterns of the invasion fronts at breakthroug
along with the corresponding generalized MTP, are show
Fig. 3 for various values ofn. In these and subsequent sim
lations, lattice sizes ranged from 50350 to 5003500 in 2D,
and from 10310310 to 40340340 in 3D.

At small values ofunu, the fronts appear to be self-affine
with front widths and trapped fraction of sites decreas
with decreasingunu. Forn50 @Fig. 3~a!#, the displacement is
compact, the front width is equal to the pixel size, there
no trapped sites, and the MTP is a straight line, as the m
mum measureS0 is simply the smallest Euclidean distanc
from the front to the right boundary. At a slightly largern
@Fig. 3~b!# the MTP appears to have the structure of a m
tifaceted curve. Asn increases further@Figs. 3~d!–3~e!#,
front width and trapped fractions increase, and the MTP
more tortuous. In the limitn→`, the patterns are shown t
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FIG. 4. Invasion pattern and the correspon
ing MTP for n51 for IPM in radial geometry
~originating from a single point!.
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approach IP@Fig. 3~f!#, where the front advances by selec
ing the perimeter site with the minimum size. The cor
sponding IP pattern@Fig. 3~f!# suggests that this is indeed th
case. The same also holds for the casen→2` @compare
Fig. 3~h! and Fig. 3~i!#, where it can be shown that the pa
tern approaches that of IP, where the front advances by
vading the bond with the maximum size@9#.

To prove the reduction to the IP problem in the lim
n→`, we proceed as follows. Consider any two pairs
neighboring sites (F1 ,F18) and (F2 ,F28) such that the thresh
old of the bondF1F18 is smaller than that of bondF2F28

tF1F18,tF2F28. ~7!

We will show that in the largen limit the following inequal-
ity holds

Vn~F1!1tF1F18
n

,Vn~F2!1tF2F28
n

. ~8!

If valid, this implies that siteF18 is invaded before siteF28 ,
which is the desired IP rule. For the proof, we rearrange
~8! to read

Vn~F1!,Vn~F2!1tF2F28
n F12S tF1F18

tF2F28
D nG ~9!

and take the largen limit. In view of Eq. ~7!, the inequality
in this limit further reduces to

Vn~F1!,Vn~F2!1tF2F28
n

. ~10!

However, the latter is always valid, as its reverse impl
Vn(F28),Vn(F1), namely, that siteF28 has been occupied
before siteF1 , in contradiction with our implied assumptio
that siteF28 is a perimeter site. It follows that in this limit, i
is the bond with the smallest threshold that is invaded n
This is identical to the IP rule~which in this particular ex-
ample has a rough physical analog in imbibition, namely,
displacement of a wetting by a nonwetting fluid in poro
media @10#!. An identical argument applies for the lim
n→2`, except that now it is the bond with the large
threshold that is occupied next@9#. Either problem involves
site occupancy, bond percolation with bond trapping. T
existence of bond trapping is important for the properties
the limiting percolation problems. Patterns in the ran
~21/2,0! were also investigated, in view of the special atte
tion paid to this range in the corresponding DPRM proble
The patterns were found to be similar to the case of sm
and positiven, however.
-

n-

f

q.

s

t.

e

e
f
e
-
.
ll

The IPM algorithm can readily simulate IPM in a radi
geometry, in which invasion originates from a single poi
In essence, this is a modification of the conventional DPR
problem to invasion which is not directed. An invasion pa
tern and the corresponding MTP forn51 is shown in Fig. 4.
The pattern reveals a rather compact displacement wit
rough front, quite analogous to the rectilinear invasion ca
Similar results were found for the same process in 3D latti
@9#. Finally, we note that processes with other measures
also be defined: For example, we may consider astagepro-
cess, where each element~stage! has efficiencyt i , with 0
,t i,1, and where the maximization of the overall ef
ciency P it i , is sought. Through the transformationh5
2ln t, the problem can be mapped into the casen51, con-
sidered previously, except that now the measure to
minimized isH52( i lnti , namely, the thresholds are dis
tributed in the different interval~0,̀ !. Likewise, we may
define the information~entropy! measureI52( it i lnti . The
minimization of eitherH or I also leads to fronts similar to
the n51 case~see@10#!.

Directed invasion

The IPM algorithm was next modified to simulate a d
rected invasion percolation process. In this version, the fr
is not allowed to invade bonds in a direction opposite to
main invasion direction~which in the illustrations of Fig.
1–3 is from right to left!. As a result, the corresponding MT
is also directed. To show this, we recall that the tracing of
MTP involves the successive connection of pairs of sit
which at some stage of the process were a front growth
and its perimeter site to be occupied next, respectively. A
result, this renders the MTP directed. Using arguments id
tical to Appendix A for the nondirected case we can sh
that the directed version leads to the identification of pa
that are directed and also minimize the sum of thresholds
particular, the MTP at breakthrough corresponds to the o
mal path of the simplest version of the DPRM proble
which shares the same origin as the MTP. The IPM al
rithm can be used in the study of more general DPRM pr
lems, and we hope to report on these in the future.

Snapshots of the resulting patterns are shown in Fig. 5
various values ofn. In the casen51, the optimal path of the
DPRM problem is known to be a self-affine curve with
zero transverse average, but with an increasing variance

^uy~x!u&;xnDP, ~11!

where the meandering exponentnDP has the exact value
nDP52/3 @14#. As pointed out, this problem can be mapp
to the KPZ equation@6#, which is a generic model for surfac
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FIG. 5. Invasion fronts at ‘‘breakthrough’
and corresponding MTPs for directed invasio
and for n50.5 ~a!, n51 ~b!, n53 ~c!, n510
~d!, n5100 ~e!, and directed IP~f!. The optimal
path of this DPRM at largen is the backbone of
a directed percolation cluster.
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roughening and surface growth. The self-affine behavio
apparent in Fig. 5~b!. As in the nondirected case, the pa
appears to be multifaceted for sufficiently smalln @Fig. 5~a!#,
while fronts and minimum paths become more tortuous
n increases@Figs. 5~c!–5~d!#. In the limit unu→` the prob-
lem becomes a directed, site-occupancy bond IP with b
trapping, and the optimal path becomes its backbone@see
Fig. 5~e! and Fig. 5~f!#. The approach to this limit can also b
proved theoretically using arguments similar to those for
nondirected case. The significant variation of the path pr
erties asn varies has not been reported previously, to o
knowledge, most investigations having focused on eithen
51 or 21/2,n,0. In fact, the apparent effect of disord
in varying the patterns from multifaceted~at smalln! to self-
similar ~at n→`! is analogous to the behavior reported
@15#, in a different context, and deserves further attention
it may contradict the apparent universality associated w
the DPRM problem.

Comparison with the nondirected case~Fig. 3! shows that
for small values ofn the two processes are identical~for
example, compare the patterns forn51 or smaller, and also
note the very close similarity even forn53!. In fact, the two
patterns forn51 in Figs. 3 and 5 are identical, although th
happens to be a coincidence of the particular realization.
ferent realizations show that the MTP forn51 contains oc-
casional overhangs, the probability of which is briefly d
cussed below. Asn increases to larger values the differen
between directed and nondirected invasion increases,
with respect to the invasion patterns and the resulting M
The close relation between nondirected and directed I
processes at smalln suggests that the MTP forn51 has
properties similar to the optimal path of the DPRM. On t
other hand, the divergence of patterns and paths at largn
shows that this connection does not extend to arbitr
threshold distributions, and specifically those involving re
tively largen ~large threshold variance or largem!. We infer
that the MTP coincides with the optimal path of the DPR
at smalln, but it differs from it at largern.

III. CONNECTION TO GRADIENT PERCOLATION

In essence, the IPM algorithm simulates an invasion p
colation process, in which the front advances by penetra
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perimeter sites with the smallest value ofVn . The front dy-
namics reflect the distribution of this field, and to understa
better the IPM process, it is necessary to consider the di
bution ofVn . For future use, we need to point out that t
value of Vn at a site can be likened to the energy of t
minimum path from that site to the boundary, just as in t
DPRM problem, the statistics of which have been well e
cidated.

Figure 6 shows various properties of the distribution
V1 for a fixed spatial locationx ~namely, over all sites on a
column transverse to the main invasion direction!. The PDFs
at a fixedx appear to be close to a Gaussian@Fig. 6#, but with
spatially varying arithmetic meanV̄1 , and standard deviation
sV1

, and to have the general dependence

FIG. 6. Statistics of the energy~cost! distributionV1 from simu-
lations in a 1003100 lattice:~a! The PDF at three different value
of x ~equal to 0.25, 0.50, and 0.75!, ~b! the variation of the arith-
metic meanV̄1 with x, and~c! the variation of the standard devia
tion, sV1 with x.
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f ~V,x!5
g~z!

sV1
~x!

. ~12!

Hereg is the distribution function, the precise form of whic
is not important to this paper, and we have defined the n
malized variablez5@V2V̄(x)#/@sV1

(x)#. The functional
form ~12! is consistent with the corresponding results for t
DPRM problem@16#. The variation ofV̄1 with x is shown in
Fig. 6~b!. After a short transient, the mean is found to i
crease linearly with distance, with a constant slopeC1 ,
which is closely related toL1 . The latter also varies with
distance, to reflect the finite-size scaling anticipated from@1#.
Analogous results are expected for the generaln case, where
we havedV̄n /dx→Cn . However, we expect that the ap
proach to the limit is much slower at largen, and, in fact,
that at n→` the transient lasts until breakthrough. Th
variation of the mean with distance is consistent with
corresponding result in the DPRM problem, where@16#

d^E&
dx

5D11D2x
2~2/3!. ~13!

The variation of the standard deviation,sV1
, is shown in Fig.

6~c!. It is apparent that the variance increases~at least for a
substantial fraction of the lattice length!, although its rate of
increase diminishes at largerx, suggesting a power-law
variation with an exponent smaller than unity. We recall@16#
that the corresponding DPRM problem has the scaling

sE;L1/2f S x

L ~3/2!D , ~14!

where L is the lattice size and the functionf has the
asymptotic behavior,f;x1/3 for x!1 and f;const for x
@1. By analogy, therefore, we expect a similar scaling
the generaln MTP problem

sVn
;Lxnf nS x

LznD , ~15!

where the exponentsxn andzn may depend onn and need to
be determined. This is not attempted here. In this paper,
will proceed only with the assumption that 0,xn,1, as
suggested in the simulations. In passing, we note that pr
ously reported DPRM simulations pertain ton51, and it is
possible that the exponents of Eqs.~13! and ~14! may also
vary as a function ofn. This problem also deserves furth
attention.

From the above it is apparent thatVn consists of a trans
verse average linearly increasing withx and of a perturba-
tion, c, namely,

Vn5Cnx1c, ~16!

with c̄50 and withsc scaling as in Eq.~15!. In view of the
previous, the ratio of the standard deviation to the mean m
decrease asx increases. The two facts that the transve
average ofVn increases withx and that the rule for the fron
advance is to seek the minimumVn , suggests that IPM is
closely related to IPG. We recall that IPG is invasion per
r-

e

r

e

i-

st
e

-

lation in an externally applied gradient~e.g., due to a body
force, such as gravity, or to a gradient in the bond size@17#!,
giving rise to a percolation probability gradient measured
the Bond numberB. The invasion pattern has the fract
properties of an IP cluster near the front over a scale equa
the front widthsF , but it occupies a compact region awa
from it. The front width scales withB as @7#

sF;B2@n/~n11!#, ~17!

wheren is the OP correlation length exponent.
To investigate the connection to IPG, the properties of

perturbationc are needed. Figure 7 shows a grayscale plo
c obtained from simulations in a 2003200 lattice. Also
shown, for comparison, is a map of white noise on the sa
lattice @Fig. 7~b!#. It is clear that the noise generated by t
IPM is not an uncorrelated white noise~as in standard IPG!
but it is correlatedin space. For a more quantitative measu
of the correlation we constructed the variograms ofc in the
two different directions@9#. Both variograms displayed cor
relations growing as a power law in space, similar to fra
tional Brownian motion~fBm!, with a positive Hurst expo-
nent (H) @18#. For the casen51, we foundH50.32,0.5
and H50.41,0.5 in the respective directions. The Hur
exponent was found to steadily decrease withn ~for ex-
ample,H50.13 andH50.19 in the respective directions fo
n55, see@9#!.

FIG. 7. Grayscale plot of the perturbationc for n51 from
simulations in a 2003200 lattice~a!. ~b! shows a Gaussian noise fo
the same lattice. Darker colors correspond to smaller values.
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The development of strong large-scale correlations
relatively smalln is expected from the definition of the in
vasion rules. After the front has reached a steady-state m
velocity, the perturbations of two adjacent sitesA and B
would satisfycB5cA1tAB

n , if sitesA andB are along the
y direction, orcB5cA1tAB

n 2Lnn , if along thex direction
~and where we assumed that the pairs of sites are the gr
site and its next to be occupied site, respectively!. Then, it is
evident that the perturbations of adjacent sites are stro
correlated, and that this correlation diminishes with incre
ing n. However, this argument also shows that the corre
tion should be isotropic. We suspect that the anisotro
found in @9# is due to the early transient.

Using the above information we can establish a conn
tion between IPM and IPG. The connection to IPG is de
onstrated in Appendix B, where we show that after the ea
transient, IPM is an IPG with a Bond number given by

Bn5Dc
F dV̄

dx

sVn
~xF!

G , ~18!

where the constantDc solves an algebraic equation depen
ing on the form of the scaling functiong. The two keys to
this relationship is the assumed scaling ofVn , Eq. ~12!, and
the decay of the derivative ofsVn

with distance, Eq.~15!

~although for a 2D square lattice and a symmetricg the latter
condition is not necessary, see Appendix B!. Contrary to
conventional IPG, however, the above Bond number is
constant but varies withx, as a result of the variation o
sVn

. Equation~18! can be further approximated as

FIG. 8. Log-log plot of the front widthsF vs Bn for different
lattice sizes and forn in the range~0,3!. The straight line in the
inset has a slope of21. Comparison with the theoretical slop
2@n/~n11!#, suggests that IPM is an IPG in a long-range correla
field ~n5`!.
t

an

th

ly
-
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y

c-
-
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-

t

Bn;
Lnn

sVn
~xF!

, ~19!

sinceCn eventually approachesLnn ~see below!.
The identification of IPM with IPG allows us to expres

the scaling of the front width,sF , with the above-defined
Bond number. Now, however, we must consider IPG in
correlated lattice with growing correlations, as suggested
Fig. 7. Despite this, the same arguments used for the con
tional IPG scaling~17! apply here as well~see also@19#!,
except thatn should be the correlation length exponent co
responding to percolation in such a lattice. Percolation
long-range correlated lattices of the fBm type has been s
ied by Isichenko@20# who showed that forH.0 the corre-
lation length exponent diverges,n→`. For IPG in such lat-
tices, therefore, substitution in Eq.~17! leads to the scaling

sF;Bn
21. ~20!

The theoretical prediction~20! is tested in Fig. 8, which
shows a plot of the front width, computed as in@1#, vs the
above-defined bond number. The data at relatively largeBn
are fitted very well with a straight line of slope21, as indeed
predicted from Eq.~20!. At smallerBn ~largern!, the slope
decreases and eventually becomes zero, as the lateral la
size interferes with the process~as in IPG! and the front
width saturates.

Equation~20! also allows us to relate the standard dev
tion of Vn to that of the front. Substitution of Eq.~18! in Eq.
~20! yields

sF;sVn
~xF!, ~21!

which suggests that the ratio of the front width to the sta
dard deviation ofVn is constant. A plot of this ratio for a
particular realization of IPM withn51 is shown in Fig. 9. It
is clear that after some early transients, the ratio fluctua
around a constant value, as predicted from Eq.~21!. This
behavior was also confirmed for other values ofn, although
the transient period increases withn. Equation~21! indicates
that the variation of the front width with distance follows th
same scaling as the standard deviation ofVn , which was
conjectured in Eq.~15! to have a self-affine scaling. Thi
leads to the result

d

FIG. 9. Spatial variation of the ratio of the front width vs th
standard deviation ofV1 . The ratio stabilizes to a constant valu
after an early transient, consistent with the prediction of Eq.~21!.
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sF;Ljnf nS x

LznD , ~22!

where the functionf has the same asymptotic scaling.
In summary, in this section we established a connectio

IPM with IPG, with two important twists: that in IPM the
probability gradient is generated dynamically during the p
cess instead of being externally specified; and, at least
finite n, the process is one of gradient percolation in acor-
related field. We note that identical findings also apply f
the directed problem, hence a connection must exist betw
the DPRM problem and IPG in a correlated field. This co
nection is worth exploring further.

IV. GENERAL RESULTS

Using the preceding algorithm, various quantities of int
est can be calculated. In particular, we consider the MTP,
minimum gradient, and the MTP tortuosity. A study of th
distribution of thresholds can be found in@9#. All these re-
sults are for the nondirected case. Results for the dire
problem will be reported in a future study.

Minimum threshold path

The MTP forn51 is shown in Fig. 10 for invasion in a
cubic lattice. Generalized MTPs for variablen were shown
in Fig. 3. These vary from a straight line forn50 to self-
similar fractals forn5u`u. The increase in tortuosity asunu
increases is due to the change of the invasion front fr
compact to self-affine to self-similar, as discussed above.
a finiten, therefore, and specifically forn51, we expect that
the MTP is a self-affine curve~in the more general definition
of Feder@18#, which also encompasses gradient percolat
fronts! with a width that decreases asunu decreases. In par
ticular, for sufficiently smallunu, the MTP coincides with the
optimal path of DPRM. Asunu→`, the MTP approaches
specific limiting curve. To understand its properties we fi
recall that for anyn, the invading phase resides on se
avoiding dendritic branches emanating from the right bou
ary. These branches have the property that any two inva
sites on the same branch can be joined by only one s
avoiding path consisting of invaded sites, while invaded s

FIG. 10. The MTP forn51 for a 3D cubic lattice 20320320.
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belonging to different branches cannot be joined by any s
path~except by a path that passes from the origin!. The MTP
is part of the backbone of these branches, after dend
fractions are suppressed. Figure 11 shows the backbone
the various branches at the breakthrough point forn51 and
n5`. In the first case~and also whenunu is not large!, many
parallel-like branches coexist, and the MTP is the part of
particular branch that has reached the opposite side. H
ever, in the percolation limit,unu5`, a dominant branch
develops. By definition, this branch, which is also the MT
at theunu5` limit, is the backbone of the cluster of a site
occupancy bond IP with bond trapping, obtained in the la
unu limit. Therefore, in the generaln case, the MTP is unre
lated to a property of the percolation cluster. In particul
the MTP forn51 is not a self-similar fractal, but instead
is a member of a general family of self-afine curves th
includes as a limit~large unu! the backbone of a site-bon
percolation cluster. Because, contrary to regular site or b
percolation, this percolation process involves alooplessper-
colation cluster, the MTP in that limit is also alooplessfrac-
tal. It can be shown that the latter is a subset of the backb
of the invasion cluster in conventional bond percolation, b
it does not coincide with the conventional chemical distan
of percolation@9#.

FIG. 11. The backbones of the dendritic branches, on which
invaded sites reside, originating from the right boundary for IP
with ~a! n51 and~b! n5` ~site-occupancy, bond-invasion perco
lation with bond trapping!, from simulations in a 1003100 lattice.
For n51 the backbones appear self-affine and ‘‘parallel’’ to ea
other. Note the single dominant branch forn5`. The MTP forn
5` corresponds to the backbone of the loopless IP and it i
self-similar fractal. Periodic boundary conditions were used in
simulation.
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In a recent paper, pointed to us by one of the review
Cieplak, Maritan, and Banavar@21# proposed a loopless IP
similar to IPM forn5`. They reported that the backbone
a self-similar fractal with fractal dimensionD51.22 in 2D
andD51.42 in 3D. In agreement with our observations, th
also found that the geometry of this backbone is not the s
with that of the chemical distance on the percolation clus

Similar results are obtained for the optimal path of t
DPRM problem in the largeunu limit, which can be shown to
be the loopless backbone of the corresponding directed
cluster. The significance of the variation of the optimal pa
of the DPRM problem withn was commented in Sec. II.

Minimum gradient

Another quantity of significant interest is the generaliz
percolation thresholdLn , which in the casen51 reduces to
the minimum gradientu¹Fumin[L1 . It was found that after
some transients,L1 stabilizes to a mean value approximate
equal to 0.30560.01. The corresponding value for 3D cub
lattices was found to be 0.19660.005. These compare we
with the respective values of 0.29 and 0.17, reported by
himi @2#. The value of 0.22 found by Roux and Herrmann@1#
in a square lattice tilted at 45° is also consistent with
above, if we make the obvious transformation 0.305&
'0.22, to reflect the difference in the definition of lengthL
in the two problems. The latter results were also verified
@9# by additional simulations in a tilted 2003200 lattice,
which gave the value of 0.2232.

The variation of the more general measureLn with n is
shown in Fig. 12~includingn,0!. For positiven, this mea-
sure is a monotonically increasing function ofn and ap-
proaches the limitL`→pc50.5, as anticipated by Rou
et al. @1#. Indeed, from definition, we have

(
i

t i
n5tmaxF11 (

iÞmax
e i
nG→tmax

n , ~23!

where the notation is self-evident and we have takene i
5t i /tmax. It follows that

FIG. 12. The variation of the generalized minimum gradie
Ln with n. Note the asymptotic approach topc and 12pc as n
approaches̀ and2`, respectively.
s,

y
e
r.

IP
h

a-

e

n

L`5min lim
n→`

tmax
L1/n

5mintmaxS 1L D 05mintmax5pc ,

~24!

wherepc is the threshold to a percolation process in whi
the front advances by invading the minimum threshold.
similar analysis holds for the opposite limitn→2`, where
the limit L2`→12pc was also verified. In view of the re
lation between the moments for generaln and general PDFs
these results provide a qualitative picture of the depende
of the minimum sum of thresholds distributed from gene
PDFs, on the ratio of the standard deviation to the arithm
mean.

We also note thatLnn is related to the slopeCn of the
spatial variation of the mean for the following reasons: T
arithmetic meanV̄n approaches the mean ofVn sampled over
all front sites. However, the latter also approachesLnn , be-
cause by construction, the maximum difference between
two values ofVn at the front is bounded by maxtn51.
Hence, for a sufficiently large lattice or a sufficiently sma
n, all values at the front~including the minimum sumLnn!
eventually must grow at the same rate. This does not ne
sarily imply that the width of the front approaches a consta
however. Thus, we also expect the asymptotic relationsh

dV̄n
dx

'Lnn , ~25!

for all n.

Tortuosity of the MTP

A final quantity of interest is the tortuosity of the MTP
We expect the tortuosity to be constant for a self-affine cu
and size dependent for a self-similar fractal. The variation
the tortuosityt1 , of the MTP withn51 with lattice size was
studied in@9#, where it was found that although fluctuating
smaller sizes, it approaches a constant value at large s
the width of the fluctuations decreasing to zero. This ad
support to our observation on the self-affinity of the MT
From our simulations we foundt151.3160.01 and 1.55
60.02, for 2D square and 3D cubic lattices, respective
These tortuosity data are new. The tortuosity of the gene
ized MTP was found to increase withn, however, reflecting
the increased variance of the threshold distribution~see@9#!.

Since the tortuosity is not a universal property, it will b
affected by the particular shape of the threshold distributi
A simple, local, model for an arbitrary distribution of thres
olds can be obtained as follows. We recall that the tortuo
of the MTP reflects the advantage incurred to the path
occasionally taking transverse steps that minimize the ene
cost. Figure 13 shows schematically some of the infinit
many possibilities, for the advancement of the path in o
increment in the direction,x. Denote byPk the probability of
the MTP taking a total ofk steps in order to advance by
single increment inx,

Pk5Pr@t21t31•••1tk11,t1#; k52,3,..., ~26!

t
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where the values oft are random thresholds from a given
PDF. Then, the total path lengthl is equal to

l5LF11 (
i52,̀

wi~ i21!Pi G , ~27!

wherewi is the number of different configurations corre
sponding to a given number of steps~for example,w552 in
Fig. 13!. Given a PDF, the various probabilities above can b
computed. In particular, for the case of a uniform PDF i
~0,1!, which is also the previousn51 case, we can compute
the probabilities of Eq.~26! to find @9#

Pk5
1

~k11!!
. ~28!

For the tortuosity of the path requires that the weightswi be
computed. For the square lattice configuration of Fig. 1
w25w35w451, butw552, etc. Configurations of a larger
number of steps have largerwi , but substantially smaller
probability. If, as an approximation, we takewi51 for all
i , we obtain the resultt1'42e51.282, which is reasonably
close to the numerical value given above. The discrepancy
due to the assumption made. Inclusion of path multiplicit
which increases withk, will lead to an improved agreement.
This simple model can be used to investigate the effect
the MTP tortuosity of more general PDFs@9#, or to estimate
the probability of an overhang in a path@such as depicted in
Fig. 13~e!, for example#.

V. HIGHER-COST PATHS

In many applications, such as the flow of Bingham pla
tics and foams in porous media@2,3,22#, the behavior follow-
ing the onset of flow or displacement is of significant inte
est. In this context, the identification of paths of higher co
~energy! than the MTP is necessary. This problem also aris
in the DPRM case, where patterns reminiscent of river delt
were found@5#. In this section, we use the IPM algorithm to
identify these paths as the applied potential difference acro
the lattice increases. We note, again, that contrary to t
DPRM problem, where all paths originate from a singl
point, here the paths can originate from many differe
points on the injection face.

When the applied potential gradient exceeds the minimu
u¹Fu.u¹Fumin , additional bonds, not belonging to the

FIG. 13. Alternative pathways that can be taken by the MTP
advance by one step in thex direction~here from right-to-left!. The
possibilities of two steps~a!, three steps~b!, four steps~c!, and five
steps ~d! and ~e!, are indicated. Note the backtracking~‘‘over-
hang’’! in ~e!.
e
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MTP, can become open. The new paths that are formed
identified by the condition that the overall sum of thresho
on them exceeds the minimum potential difference but
smaller than or equal to the applied. We proceed by ide
fying the sequence of paths with progressively higher
ergy. Only the threshold across a bond is considered to c
tribute to the cost across an open bond~namely, there is no
flow-induced potential drop, as would be for example t
case in the flow of a Bingham plastic!. The new paths can be
completely new paths, unrelated to the MTP or other op
paths, or they may share with them some of their bonds
the latter case, an open path could act as a bridge betw
two already open paths, it may form a loop with one path,
it may connect one end of the lattice to a point of an alrea
open path. The algorithm to find such paths must simu
neously identify the path and also determine its cost~the
necessary potential gradient to make it open!. It is described
in the following. For simplicity, the discussion will be re
stricted to then51 case, the generalization to other valu
of n being straightforward.

We recall that at the conclusion of IPM, a valueV ~where
the subscriptn was omitted! is assigned to every invade
site, that denotes the minimum overall threshold from
site to the right-hand side~RHS! boundary of the lattice.
Consider, next, another IPM process, now from the left si
through which another functionW, is assigned to each site
that denotes the minimum overall threshold from the site
the LHS boundary of the lattice. The minimum potent
F i j needed to open a bond between two adjacent lattice s
i and j ~see Fig. 14! must be the minimum of the cost of th
two alternative pathways, namely,

F i j5min~Vi1t i j1Wj ,Vj1t i j1Wi !. ~29!

Hence, from a knowledge of the functionsV andW at every
site, the minimum potential to open a given bond,F i j , can
be computed.

Having assignedF, the algorithm proceeds sequential
from low to high energies by identifying the candidate bon
belonging to the next open path. Figure 15 shows the op
ing of the various paths as the potential difference increa
As expected, the first such path is the MTP. The succes
opening of new paths is apparent in the model. These fo
correlated pathway regions~valleys!, which are different
than the paths of OP. The successive opening of pathw
leads to ‘‘flooded’’ regions of increasing width analogous
the ‘‘river deltas’’ of the DPRM problem. Based on thes

o
FIG. 14. The two alternative pathways~solid and dashed lines

respectively! that can lead to the opening of bondi j connecting
adjacent sitesi and j .
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7188 55HOOSHANG KHARABAF AND YANIS C. YORTSOS
results, the fraction of bonds belonging to open paths vs
applied potential gradient can be computed. Figure 16 sh
the results obtained. After the minimum gradient, the fr
tion of open bonds increases following anS-shape curve.
The curve has percolationlike characteristics, in that ther
a thresholdL1 , but it is not actually related to percolation
except in the limit of largen. In fact, the scaling of the curve
~for n51! near the threshold, was shown by Rouxet al. @1#
to be a power law with exponent equal to 2. The results

FIG. 15. Representation of the open paths as the applied po
tial increases at different stages:~a! MTP, ~b! one-third,~c! two-
thirds, and~d! three-thirds of all possible open paths, for a 1
3100 lattice.

FIG. 16. The fraction of open bonds as a function of the app
gradient forn51 from simulations in a 40340340 lattice.
e
s
-

is

f

Fig. 16 were used in@22# to model the fraction of flowing
foam in porous media.

VI. UNSTABLE PROCESSES

In the above, we studied stable IPM. We can extend
study to ‘‘unstable’’ invasion processes, where the thre
olds are viewed as gains, rather than penalties, and w
instead of minimizing the cumulative threshold~penalty! we
maximize the cumulative gain. Thus, the rule for the adva
of the front would maximize, instead of minimizing, th
measureSn . The corresponding algorithm is trivially imple
mented. A typical snapshot of such processes from sim
tions in a 2D lattice is shown in Fig. 17, where a trappi
rule was implemented. In the case of trapping, the invad
phase consists of a singly connected self-similar thread
sites. Contrary to the previous case, the front is a self-sim
fractal and was found to be identical for alln.

In the case of trapping, we can show that this path
maximum gain is a self-avoiding random walk~SAW! con-
strained to take place to the right of the invasion bounda
Indeed, by construction, the growth site is always the tip
the front, the site to be invaded next being the one ofZ21
neighbors~whereZ is the coordination number of the lattice!
with the largest value oftF,F8

n . This process can be equiva
lently simulated by randomly advancing the tip to one of
neighboring unoccupied sites. The resulting path has
SAW properties. Because of the trapping rule, however,
path obtained is not the global maximum, which would o
viously consist here of a path that covers the entire lattice~of
dimension 2!. Properties of SAW have been extensively d
cussed in previous references@23#.

The difference in the invasion fronts as we switch fro
minimizing the penalty to maximizing the gain is similar
the change from IPG in a stabilizing gradient to IPG in
destabilizing gradient in percolation processes@24#. The rule
of minimizing the cumulative penalty stabilizes the propag
tion of the front, in contrast to the rule of maximizing th
cumulative gain, which creates a great degree of instabi
A similarity can also be drawn between anti-diffusio
limited aggregation anti-DLA compact fronts and DLA fra
tal fronts@10#, which characterize viscous stable and visco
unstable, respectively, displacements in porous media.

n-

d

FIG. 17. Snapshot of unstable IPM with trapping, from simu
tions in a 1003100 lattice. The pattern is a SAW constrained
occur on the LHS of the rightmost boundary.
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VII. CONCLUSIONS

Motivated by the problem of finding the path that min
mizes the sum of thresholds in a lattice of elements w
thresholdst i , randomly distributed in~0,1!, we developed a
class of invasion processes, in which the front advances
minimizing or maximizing the measureSn5( it i

n , wheren
is a real number. Because this rule assigns long-t
memory to the invasion front, these processes belong
new class of inversion percolation with memory~IPM!. De-
pending on whether the rule minimizes or maximizesSn , the
invasion fronts are either stable and self-affine~case of mini-
mum penalty! or unstable and fractal~case of maximum
gain!. The stable case was connected to IPG@7#, but in a
correlated lattice with self-affine correlations of the fBm ty
~positive Hurst exponent@18#!, with IP @25# recovered in the
limit unu5`. In the unstable case, the IPM process w
found to be a SAW, for anyn. These processes also includ
as a special case the~simplest! problem of DPRM@5#, by
restricting the invasion to one direction. An important diffe
ence is that the IPM algorithm leads to optimal paths that
originate from any point along a curve.

The algorithm is well suited for the identification of min
mum MTP that minimize the sum oft i

n across any two
curves~as well as from any site to a given curve!. For the
corresponding DPRM problem, the MTP becomes the o
mal path of DPRM, which for the casen51, is known to be
self-affine. In general, the MTP was shown to range from
straight line in the case ofn50 to a multifaceted curve a
small n to a self-similar fractal in the largeunu limit. The
latter is the backbone of a mixed site-bond percolation c
ter, and differs from the standard backbone of OP in tha
does not contain reconnections~it is loopless!. Its properties
were recently studied in@21#. The MTP for n51, corre-
sponding to the classical problem, is not a self-similar frac
and does not coincide with the minimum path of OP. Inste
it is very closely related to the optimal path of DPRM a
appears to be self-affine. The dependence of the MTP on
raises questions about the universality of the correspon
optimal path of the DPRM problem, when distributions wi
a large variance are considered. Various results on the M
the minimum gradient and the path tortuosity were obtain
In particular, the algorithm allows the identification of pat
of higher energy~cost!, which generalize the ‘‘river deltas’
of the DPRM problem.
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APPENDIX A

Proving that Vn(A) represents the minimum sum o
thresholds from siteA to the injection boundary, is equiva
lent to proving that the minimum threshold path fromA to
the injection boundary is the MTP determined algorithm
cally using the IPM process~pathL in Fig. 18!. First, we
recall that through the IPM algorithm,all sites in the lattice
can be invaded, and thus be assigned a unique valueVn .
This can be accomplished by continuing the invasion proc
h

by

e
a

s

n

i-

a

-
it

l
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g

P
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t

-

ss

following breakthrough, and by also removing the trappi
rule.

To prove our assertion, we use areduction in absurdio
argument: Assume that there exists another alternative p
denoted asL* in Fig. 18, and consider the first siteB on path
L at which the two paths first diverge. Without loss in ge
erality, we can take this site to be siteA. ~In the opposite
case, we can apply the argument for siteB. If the minimum
threshold path fromB is the MTP determined from the IPM
algorithm, then, by extension, pathL from A will also be the
MTP!. For future use, we consider the invasion stage wh
siteA becomes invaded for the first time. In the notation
the text, at that time siteA will be denoted as siteG8. By
construction, the valueVn(A) assigned to it corresponds t
the minimum value ofSn,FF85Vn(F)1tFF8

n , for every site
F on the invasion front at that time. By the same toke
Vn(A) must also be larger than the valueVn(I ) assigned to
all invaded sitesI ~including the front sites! prior to this
time, since in the opposite case, siteA would have been
invaded at an earlier time. Hence, we have the inequaliti

Vn~F !,Vn~A!<Vn~F !1tFF8
n ~A1!

for all sites at the front. Furthermore, the second inequa
also implies

Vn~A!,Vn~ I 8! ~A2!

for all sitesI 8 invaded following the invasion of siteA. The
corresponding MTP~pathL in Fig. 18! connectingA to the
RHS boundary is traced with the use of the IPM algorithm
discussed in the text. In particular, this path contains
bondAG, whereG is the growth site forA.

Assume, now, that pathL* is the MTP. This implies that
the sum of thresholds along this path is equal to a new va
Vn* (A), where

Vn* ~A!,Vn~A! ~A3!

and that siteG* onL* adjacent toA has also assigned to
a valueVn* (G* ), such that

Vn* ~A!5Vn* ~G* !1tG* A
n , ~A4!

where

FIG. 18. Schematic of the various alternative minimum thre
old paths from siteA to the RHS boundary. PathL is the MTP of
IPM, while L* is the hypothetical alternative.
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Vn* ~G* !,Vn~G* !. ~A5!

Inequality~A5! follows from the fact that in the reverse cas
we would haveVn* (A).Vn(A), due to ~A1! and ~A4!, in
case siteG* was a front site at the time siteA was invaded,
or due to ~A2!, in caseG* was invaded after siteA. By
comparing~A3! and ~A5! it follows that to prove the exis-
tence of a path atA alternative to the MTP determined from
the IPM algorithm, requires to prove the same for siteG* .
By induction, therefore, the problem is reduced to prov
the validity of inequality~A3! for the first ever siteA in-
vaded. But this is not possible, since for such a site,Vn(A)
represents by construction the minimum threshold adjac
to the injection face. It follows that inequalities~A5! and
~A3! are not valid, thus, the MTP determined from the IP
algorithm is the path that minimizes the sum of thresholds
claimed.

APPENDIX B

Consider bond invasion percolation in a field ofV values
~where we have omitted subscriptn for simplicity!, with the
following PDF

f ~V,x!5
g~u!

sV~x!
, ~B1!

where g is a function of the normalized variableu5@V
2V̄(x)#/@sV(x)#. Conventionally, in IP the front advance
by penetrating the perimeter bond with the smallest value
V. Let the mean front position at a given stage of the proc
be xF , and assume that the bond to be invaded next has
valueVM . Then, we can assign to any positionx, a perco-
lation probability fractionp

p~x!5E
0

VM
f ~V,x!dV, ~B2!

which, in view of ~B1! can be simplified to

p~x!'GSVM2V̄~x!

sV~x!
D . ~B3!

Here we defined

G~u!5E
2`

u

g~h!dh ~B4!

and also assumed thatx is sufficiently large for
V̄(x)/sV(x)@1 @since at largex, sV grows slower than
V̄(x)#. Now, ~B3! also applies at the mean front positio
,
n
or
,

nt

s

f
ss
he

where as is well known from the theory of gradient perco
tion @7#, p is equal to the percolation threshold,pc . Hence,

pc5GSVM2V̄~xF!

sV~xF!
D . ~B5!

This is an algebraic equation with respect to the argum
the solution of which leads to an expression forVM . By
denoting its root byuc , we find

VM5sV~xF!uc1V̄~xF!. ~B6!

As an example, we may take a Gaussian distributi
for which the expressions corresponding to~B4! and ~B5!
read G(u)51/2(11erf u) and pc51/2@11erf„VM

2V̄(xF)…/sV(xF)], respectively, and whereuc is the root of

1
2 ~11erf uc!5pc . ~B7!

In the latter case, we also have,uc50, or uc520.48 for a
2D square or a 3D cubic lattice, respectively. We note t
the resultuc50 is also valid for all 2D square lattices wit
eveng.

Now, we can substitute~B6! in ~B3! and expand in a
Taylor series around the mean front positionxF to obtain
around the front

p5pc2B~x2xF!1O@~x2xF!2#, ~B8!

where the Bond numberB is equal to

B5G8~uc!F dV̄

dx

sV~xF!
1uc

dsV

dx

sV

U
F

G , ~B9!

which for a Gaussian, also reads

B5
exp~2uc

2!

Ap
F dV̄

dx

sV~xF!
1uc

dsV

dx

sV

U
F

G . ~B10!

Thus, if we further assume that (d lnsV )/(dx) decreases with
x to zero, the second term in the RHS inside the brack
becomes negligible at largex, hence

B'Dc
F dV̄

dx

sV~xF!
G , ~B11!

whereDc5G8(uc). This relationship is exact foruc50.5,
for example for even PDF’s in a square lattice.
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