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Invasion percolation with memory

Hooshang Kharabaf and Yanis C. Yortsos
Department of Chemical Engineering, University of Southern California, Los Angeles, California 90089-1211
(Received 15 November 1996; revised manuscript received 30 January 1997

Motivated by the problem of finding the minimum threshold p&@#iTP) in a lattice of elements with
random thresholds;, we propose a new class of invasion processes, in which the front advances by mini-
mizing or maximizing the measui®,==; 7" for realn. This rule assigns long-time memory to the invasion
process. If the rule minimizeS, (case of minimum penaljythe fronts are stable and connected to invasion
percolation in a gradieftl. P. Hulin, E. Clement, C. Baudet, J. F. Gouyet, and M. Rosso, Phys. Rev61ett.
333(1988] but in a correlated lattice, with invasion percolati@n Wilkinson and J. F. Willemsen, J. Phys.

A 16, 3365(1983] recovered in the limitn|=c. For smalln, the MTP is shown to be related to the optimal
path of the directed polymer in random medXPRM) problem[T. Halpin-Healy and Y.-C. Zhang, Phys. Rep.

254, 215(1995]. In the largen limit, however, it reduces to the backbone of a mixed site-bond percolation
cluster. The algorithm allows for various properties of the MTP and the DPRM to be studied. In the unstable
case(case of maximum gajnthe front is a self-avoiding random walk51063-651X%97)08805-3

PACS numbgs): 47.55.Mh, 64.60.Ak, 05.40:j

I. INTRODUCTION simulations in two-dimensional2D) lattices of thresholds
uniformly distributed in (0,1), they further estimated
Many processes of practical interest involve disorderedV®|in()=0.231 and|V®|,()=0.227 for the directed
media or lattices of elements with randomly distributedand nondirected cases, respectively. They also made the very
thresholdsr;>0. The typical problem consists of the appli- interesting observation that the two problems of the onset of
cation of an overall difference in potenti@r in pressure in conduction in a lattice of thresholds and percolation, ought to
the case of fluid flow in porous medja\®, across opposite be connected, as their respective thresholds are special cases
ends of a lattice(or of the pore network representing the of the more general expression
porous medium A lattice element remains closed to trans-
port if the local potential difference is smaller than its thresh-
old A¢;<7;, but becomes open in the opposite case,
>7;. In these problems, a quantity of significant interest is
the minimum overall thresholdy®,,;,, or, equivalently, the
minimum gradient

Ei 7__n 1/n
: ) ©)

,Cn:min(

with n=1 corresponding to the threshold-lattice problem
2T and|n| = to OP. Additional information on the MTP or on
L @) its connection to percolation, was not provided, however.
Sahimi[2] provided estimates dV ®| () and conjec-

at which a path of open elements first forms. In the abovetured that the MTP has the same scaling properties as the
the sum is over the minimum threshold p&khTP), whichis  well-studied minimum path,,, of a percolation cluster. The
unknown and must also be determined. The problem typilatter (also known as the chemical distandenotes the path
cally arises in networks of diod¢4], in the flow of Bingham on the percolation cluster with the minimum total lengtin
plastics in porous medif2], and in the mobilization of tortuosity. It is known to be a self-similar fractdl], scaling
foams in porous medig8]. In a more general context, where as|~LPmin whereD , is equal to 1.13 in 2D and 1.34 in
each threshold is viewed as a pendldy, it is a problem of 3D. Rossen and Mamuf8] proceeded along similar lines
determining the minimum overall penal(g problem in glo- and proposed a percolation approach for the MTP, consisting
bal optimization. of occupying lattice elements with progressively higher

Rouxet al.[1] studied aspects of this problem in the con- thresholds. Although commenting that such a process is ac-
text of a network of diodes, by considering two different tually only an approximation, they also identified the MTP
cases, one in which the path is directetb backtracking with the minimum patH ,;, of the percolation cluster thus
allowed and one in which it is not. They suggested thatobtained.
|V®|nin is akin to a percolation threshold and studied its Closely related to the above is the problem of a directed
dependence on the lattice site Their findings showed polymer in random medi#dDPRM) (see[5] and references
finite-size scaling similar to directed percolatitidP) or or-  therein. Here, a well-studied version involves a directed
dinary percolation(OP), respectively, from which they con- (stretchedlpolymer in a square lattice with one end anchored
cluded that the onset of connectivity in this problem is of theat the origin(x=0, y=0), which is allowed to move in dis-
same universality class as percolation. Using numericatrete steps along the two directiorsandy, subject to the

|V(I)|min(|—)E
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constraint|y(x+1)—y(x)|=0 or 1, and that the polymer potential difference exceeds the minimum value, is briefly
cannot turn back in th& direction(overhangs not allowed  studied. Finally, for the sake of generalization, we also con-
An energy coste randomly distributed, is associated with sider the case of maximizing, (maximum gaip, where, in
every step. The objective is to find the configuration thatthe presence of a trapping rule, the front is shown to be a
minimizes the total energy. This problem was mapped to theelf-avoiding random walkSAW).

celebrated Kardar-Parisi-Zhan@{PZ) equation (see [6]), Before we proceed, we note that the consideration of the
which is known to give rise to self-affine fractals, and is alsovarious moments of is equivalent to considering distribu-
connected to the more general problem of interface growthions of new thresholdg= 7", with probability density func-
and surface roughenind@or example, wetting in porous me- tion (PDPF), arithmetic mean and standard deviation equal to
dia, burning of paper, etcwhich also lead to self-affine

fractals. As the MTP and DPRM problems both involve the 1 1 n

minimization of a global quantity, we expect that they also f(7)= Tl M=l ()= =1 T

would be closely related. (1+n)y1l+2n
At present, a firm connection of the lattice-threshold prob- (4)

lem to percolation appears to be lacking. In particular, the ) o
relation of the MTP to the minimum path of percolation, if it FéSpectively. For the more general problem of finding the
indeed exists, is not self-evident. The latter pertains to théMTP of arbitrary threshold distributions, we expect a rough
minimum sum of equal length segments on the OP cluste@"@l0gy between patterns with the same ratio of standard
while the former is the minimum sum of distributed thresh-deviation to arithmetic meam=o,/(7), which for the
olds in a regular lattice. Understanding this connection form@resent case reads=n/y1+2n. Thus, we anticipate that
the main objective of this paper. We present a new algorithnihe results for large or smatl would be analogous to those
for the construction of the MTP, based on which its proper-for processes with arbitrary threshold distributions and large
ties can be studied. The novelty of the algorithm is that itor smallm, respectively. From Ed4), it is apparent that for
requires the simulation of an invasion process, similar tdhe existence of the arithmetic mean we must have-1,
invasion percolatior(IP), except that here the rules for the While for that of the variancey> —1/2. Therefore, for finite
front advance depend on the front history, as explained befirst and second moments of general threshold distributions,
low. In implementing this algorithm, and in conjuction with we must restrict Eq(3) to n>—1/2. However, some results
the remark in Ref[1], however, we realized that the MTP for smallern (which formally correspond to Levy fligh{s])
problem can benefit from the study of more general invasionvill also be presentedsee Kharabaf9] for more details
processes, in which the front advances by minimiziopg We note that the DPRM problem with the PDF of Ed)
maximizing the general measure andn in the rangg—1/2,0 was singled out as a special case

by Marconi and Zhan{8] who found that, in that range, the

n meandering growth exponent varies with
Sh= Z 7i ©) The paper is organized as follows. First, the basic rules of
the algorithm and the construction of the MTP are presented.

for n real, and where the sum is over any path connecting he dprocess ||spg.en$]rallzed|_to _arbltrfrychirl]t IS shO\(/jv_n that
any site at the front to the inlet boundary. As these involvet r€duces to I in the two limita— =oo. Then we discuss

the entire history of the process, we will refer to them asthe application of the same algorithm to the solution of a

invasion percolation with memoryiPM). Both the nondi- simple version of the DPRM problem. IPM is ;ubsequently
rected and the directed problems are considered. shown to be related to IPG in a correlated lattice, where an

In the nondirected case, the properties of invasion and iPPropriate Bond number is defined. Based on this analogy,

. LR e i : the properties of the invasion fronts are elucidated. From
the generalized MTP, over whic®, is minimal, are studied. . o
It is shown that the process of minimiziry, is related to these two relations to DPRM and IPG, it is suggested that the

invasion percolation in a gradietPG) [7], but in a corre- invasion fronts and the corresponding MTPs of IPM are gen-

lated lattice, from which it is inferred that the invasion fronts erally rough_, reducing to_self-similar fractals only in the [imit
are rough, but not self-similar at all scales. A connection 01{n|=oo. Various properties of the fronts and the MTP are

the MTP to the backbone of a mixed site-bond percolatiorFtUd!ed' Then,_the _properties_ of higher—energy.pathg as the
cluster(obtained in the limi{n|=) is, next, established. In applied potential difference increases above its minimum
the directed case, the IPM algorithm allows for a generalizayalue' are briefly discussed. Finally, we present an extension

tion of the DPRM problem to arbitrary values of and of the .IPM process to the destapilizing case, whejeis
shows that the optimal path of the latter approaches the bacgl@Ximized and where the front is shown to reduce to a
bone of the mixed site-bond directed percolation cluster. W AW,

note in advance that an important difference between our

approach and the conventional one is that here we identify Il. IPM PROCESSES

the optimum configuration between any two curgeamely,
the polymer can originate from any point on a given curve,
and not from the origin only Forn=1, the optimum path in Consider an invasion process from right to left in a lattice
the DPRM problem and the MTP are found to be very simi-of sites and bonds. Invader and defender reside on the sites
lar, although not identical, based on which we conjecture thaof the lattice. The bonds have thresholts randomly as-

the MTP in the smalh limit is also self-affine. The identi- signed from a uniform distribution if0,1). The invading
fication (opening of paths of higher energy, as the applied front advances one site at a time following rules to be de-

Invasion algorithm
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FIG. 2. Snapshots of the invasion procdsscupied sites in

FIG. 1. Description of the invasion rules, befdep and afterlb)  gray) and of the MTP at different stages of invasi@—(c) for n
a growth step. Invasion occurs from right to Ieft.denotes a front =1 in a 100<100 square lattice. Periodic boundary conditions were
site, F' a perimeter siteF is a growth site andF is the site  ysed.L* denotes the site at “front breakthrough” on the left
occupied next. The process is site-occupancy bond-invasion perc@oundary.(d) shows the terminology used to identify the MTP.
lation. Note that the MTP at different stages is not necessarily a subset of

the final MTP.

scribed below. Because both sites and bonds are involved, ) ) ]
this problem is actually a mixed site-bond problem, which isPut could be any other curyeFig. 1), all invaded sites are
prototypical of fluid displacements in porous meflid]. The ~ assigned a unique valug,. In contrast to IP, where the
arbitrary site currently on the front, By’ one of its(nearest- Iarges}_avanable thrgshold,' here the advance depends on the
neighboy perimeter sites in the defender regififig. (@]  Past history, thus imparting to the process a long-time
(where a 2D square lattice is usedy Fg the site from memory. Through this algorlt_hm, it is stra|ghtforward .to
which invasion will actually proceed next, and I the ~ Show that the value/,(A), assigned to every invaded site
perimeter site to which the front advances during the nexf\ actually represents the minimum sum of thresholds
step[Fig. 1(b)]. A value V,(F) is recursively assigned to among all paths that conneét to the right boundarysee
every siteF on the front(hence, to all sites that have been APPeNdix A\. The corresponding minimum path frof to

invaded, through the following algorithm. the injection (initial) side can be easily identified, as dis-
Let 7¢ denote the threshold connecting siawith one ~ cussed below. o
of its perimeter site§’, and form the sum Typical snapshots of the occupied sites and of the corre-
sponding MTP fom=1 in a 2D square lattice are shown in
S, rer =V (F) + TEF’ ) (5) Fig. 2 at different stages of invasi¢Figs. 2a)—2(c)]. Both

the front and the MTP have the appearance of rough but not
Then, the threshold to be invaded next will connect the twg>e!-Similar curves. The MTP across the lattice can be di-
sites, a “growth” siteF and the site to be occupied next, rgctly identified when the front first reaches the Ief'_t-hand
side (LHS) boundary[at “breakthrough,” siteL*, Fig.
2(c)]. It can be traced recursively, by starting frdr#i, pro-
gceeding in the direction of decreasiNg and identifying the
next siteP that belongs to the path, and neighbors a site
P’ already on this pathFig. 2(d)], by requiring that the
conditionV,(P")=V,(P) + 7, , be identically satisfied. A
similar procedure is used to find the minimum patfrem
the current front location to the right boudargluring the
different stages of invasiofFigs. 2a)—2(b)], as well as the
is subsequently made and the process is repeated. In tHi8TP originating from any invaded sitd. These paths are
way, and by using the initial conditiovi;(R) =0 for all sites  not necessarily subsets of the MTP.
R on the initial interfacgwhich here is the right boundary, In the simulations shown in Fig. 2, a trapping rule similar

Fé, for which S, g/ is minimum. We point out that in our
terminology, the term growth site has a different meanin
from that of Roux and Guyofl1]. Having made this deter-
mination, siteF s is identified, the front advances kg, the
assignment

Vn(Fg)=Vn(Fg)+ TEGF& (6)
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(@) n=0 (b) n=0.5 (c)n=3

FIG. 3. Invasion fronts at “breakthrough”
and corresponding MTPs in a 18Q00 lattice,
(d) n=10 (e) n=100 (f) Imbibition (IP) for n=0 (a), n=0.5(b), n=3 (¢), n=10(d), n

T i =100 (e). Pattern(f) is invasion percolation,

where the front advances by penetrating the bond
with the smallest threshold. Pattefg) is for n
= —10, pattern(h) for n=—100, and patterri)
corresponds to invasion percolation, where the
front advances by penetrating the bond with the
largest threshold. Note the similarity 6&) with
(f) and of (h) with (i). Fronts become more self-
() n=-100 (i) Drainage (IP) similar, and the fraction of trapped sites increases
: g (MTPs are more tortuoli®sn increases.

to invasion fercolation with trappingPT) [12] was applied, gers. However, the IPM algorithm is more general. The
such that a trapped site cannot be invaded. Thus, in the intburning trees” algorithm results as a special case of the
vaded region, there exist closed regions, the sites of whickPM problem if the invasion is restricted to a percolation
have not been visite(Fig. 2). However, this does not affect cluster only, all thresholds take the same value, and a stan-
the values ofV, or the minimum path, as any paths that dard invasion percolation rule is taken for the invading front.
traverse trapped regions cannot, by construction, be minifhe matrix transfer algorithm can also be obtained as a spe-
mum paths. In the cases shown in Fig. 2, the number densitgial case of IPM if the invasion is initiated from a single
of the trapped regions is high, although their size is smallpoint only. We also mention an alternative but rather cum-
We must point out, however, that by relaxing the trappingbersome algorithm, also employed in MTP, which involves
rule, and by continuing the invasion process following break-solving the Laplace equation in the original lattice, using an
through, all sites of the lattice can be invaded. applied potential difference sufficiently large for all elements
Because the functiolW; is taken to be single valued, a to be open to conduction and incrementally reducing the po-
site cannot be invaded more than once, hence a noninvadéential until flow ceases, at which point the minimum pres-
bond between two adjacent sites at the front, suck and  sure gradient is identifief2].
F¢ in Fig. 1, cannot become open in any subsequent (gtep
is trapped. This has the following consequences) Be-
tween any invaded sit& and the right boundary there is one
and only one self-avoiding path occupied by invaded sites. Typical patterns of the invasion fronts at breakthrough,
By construction(see Appendix A this path is the MTP from along with the corresponding generalized MTP, are shown in
A to the boundary(ii) Because of this absence of reconnec-Fig. 3 for various values ai. In these and subsequent simu-
tions, all invaded sites belong to distinct dendritic branchedations, lattice sizes ranged from 860 to 500<500 in 2D,
which originate from the right boundary, but, otherwise, doand from 10<10X10 to 40<40x40 in 3D.
not intersect one anothé&ee also beloyv (iii ) Depending on At small values ofn|, the fronts appear to be self-affine,
the coordination numbet of the lattice, an occupied site can with front widths and trapped fraction of sites decreasing
be the growth site for two or more branches, but cannot bavith decreasingn|. Forn=0 [Fig. 3@], the displacement is
the termination point of two branches. compact, the front width is equal to the pixel size, there are
The IPM algorithm bears some relation with the “burning no trapped sites, and the MTP is a straight line, as the mini-
trees” algorithm of Herrmaneet al.[13] for obtaining infor-  mum measures, is simply the smallest Euclidean distance
mation on the backbone and other properties of the percoldrom the front to the right boundary. At a slightly larger
tion cluster, and to the matrix transfer algorithm used in thdFig. 3(b)] the MTP appears to have the structure of a mul-
DPRM problem. In the former, a process mimicking inva- tifaceted curve. Asn increases furthefFigs. 3d)—3(e)],
sion in a percolation cluster is considered and invaded sitefsont width and trapped fractions increase, and the MTP is
are labelled sequentially using consecutively increasing intemore tortuous. In the limih— o, the patterns are shown to

Patterns
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FIG. 4. Invasion pattern and the correspond-
ing MTP for n=1 for IPM in radial geometry
(originating from a single point

approach IHFig. 3(f)], where the front advances by select- The IPM algorithm can readily simulate IPM in a radial
ing the perimeter site with the minimum size. The corre-geometry, in which invasion originates from a single point.
sponding IP patterfFig. 3(f)] suggests that this is indeed the In essence, this is a modification of the conventional DPRM
case. The same also holds for the case —« [compare problem to invasion which is not directed. An invasion pat-
Fig. 3(h) and Fig. 3i)], where it can be shown that the pat- tern and the corresponding MTP for=1 is shown in Fig. 4.
tern approaches that of IP, where the front advances by inFhe pattern reveals a rather compact displacement with a
vading the bond with the maximum si8]. rough front, quite analogous to the rectilinear invasion case.
To prove the reduction to the IP problem in the limit Similar results were found for the same process in 3D lattices
n—oo, we proceed as follows. Consider any two pairs of[9]. Finally, we note that processes with other measures can
neighboring sitesk,F;) and (F,,F5) such that the thresh- also be defined: For example, we may considstagepro-

old of the bondF,F; is smaller than that of bonf,F} cess, where each elemefstage has efficiencyr;, with 0
<7;<1, and where the maximization of the overall effi-
TR < TE,F) (7)  ciency II;7;, is sought. Through the transformation=

—In 7, the problem can be mapped into the casel, con-
We will show that in the large limit the following inequal-  sidered previously, except that now the measure to be
ity holds minimized isH=—2;In7, namely, the thresholds are dis-
tributed in the different intervalO,»). Likewise, we may
Vo (Fy)+ TE e <Vn(F2)+ 7-2 e (8)  define the informatiorientropy measurd = — X;7iIn7. The
v 22 minimization of eitherH or | also leads to fronts similar to

If valid, this implies that sité=; is invaded before sit€;, then=1 case(see[10]).

which is the desired IP rule. For the proof, we rearrange Eq.
(8) to read Directed invasion

The IPM algorithm was next modified to simulate a di-
rected invasion percolation process. In this version, the front
©) is not allowed to invade bonds in a direction opposite to the
main invasion directionwhich in the illustrations of Fig.
1-3is fromright to left. As a result, the corresponding MTP
is also directed. To show this, we recall that the tracing of the
MTP involves the successive connection of pairs of sites,
n which at some stage of the process were a front growth site
Va(FO)<Va(F2)+ TFF} (10 and its perimeter site to be occupied next, respectively. As a
) ) ) _ . result, this renders the MTP directed. Using arguments iden-
However, the latter is always valid, as its reverse implies;ca| to Appendix A for the nondirected case we can show
Va(F2)<Vy(F1), namely, that site=; has been occupied that the directed version leads to the identification of paths
before sitef;, in contradiction with our implied assumption that are directed and also minimize the sum of thresholds. In
that siteF; is a perimeter site. It follows that in this limit, it particular, the MTP at breakthrough corresponds to the opti-
is the bond with the smallest threshold that is invaded nextmal path of the simplest version of the DPRM problem
This is identical to the IP ruléwhich in this particular ex- which shares the same origin as the MTP. The IPM algo-
ample has a rough physical analog in imbibition, namely, theithm can be used in the study of more general DPRM prob-
displacement of a wetting by a nonwetting fluid in porouslems, and we hope to report on these in the future.
media [10]). An identical argument applies for the limit  Snapshots of the resulting patterns are shown in Fig. 5 for
n— —oo, except that now it is the bond with the largest various values of. In the casen=1, the optimal path of the
threshold that is occupied nej@]. Either problem involves DPRM problem is known to be a self-affine curve with a
site occupancy, bond percolation with bond trapping. Thezero transverse average, but with an increasing variance
existence of bond trapping is important for the properties of
the limiting percolation problems. Patterns in the range (ly(x)|)~x"oe, (11)
(—1/2,0 were also investigated, in view of the special atten-
tion paid to this range in the corresponding DPRM problemwhere the meandering exponengp has the exact value
The patterns were found to be similar to the case of smalbpp=2/3[14]. As pointed out, this problem can be mapped
and positiven, however. to the KPZ equatiofi6], which is a generic model for surface

TF,F!
n 171
Vo(F1)<V,(Fy)+ TFZFé|: 1—( TFZFé)

and take the large limit. In view of Eq. (7), the inequality
in this limit further reduces to
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(a) n=0.5 () n=1 (c) n=3

FIG. 5. Invasion fronts at “breakthrough”
and corresponding MTPs for directed invasion
and forn=0.5 (a), n=1 (b), n=3 (c), n=10
(¢) n=100 (f) Directed IP (d), n=100 (e), and directed IRf). The optimal

; path of this DPRM at large is the backbone of
a directed percolation cluster.

roughening and surface growth. The self-affine behavior igperimeter sites with the smallest value\gf. The front dy-
apparent in Fig. ). As in the nondirected case, the path namics reflect the distribution of this field, and to understand
appears to be multifaceted for sufficiently smallFig. 5@],  better the IPM process, it is necessary to consider the distri-
while fronts and minimum paths become more tortuous agtion of v,,. For future use, we need to point out that the
n increaseqFigs. 5¢)—-5(d)]. In the limit |n[—c the prob- 446 of v, at a site can be likened to the energy of the

lem becomeg ahdirect_ed, Isite—ﬁctc):upancy bon% 'PkWith bonthinimum path from that site to the boundary, just as in the
trapping, and the optimal path becomes its backb®®® Kooy broplem, the statistics of which have been well elu-
Fig. 5(e) and Fig. %f)]. The approach to this limit can also be cidated

proved theoretically using arguments similar to those for the Figure 6 shows various properties of the distribution of

nondirected case. The significant variation of the path prop-

erties asn varies has not been reported previously, to ourV1 for a fixed spatial locatio (namely, over all sites on a

knowledge, most investigations having focused on either column transverse to the main invasion dir_ecli&he PDFS
=1 or —1/2<n<0. In fact, the apparent effect of disorder &t @ fixedx appear to be close to a Gaussf&iy. €], but with

in varying the patterns from multifacetéat smalin) to self- ~ spatially varying arithmetic mea; , and standard deviation
similar (at n—c) is analogous to the behavior reported in oy, and to have the general dependence

[15], in a different context, and deserves further attention, as

it may contradict the apparent universality associated with

the DPRM problem. @

Comparison with the nondirected ca$ég. 3) shows that 08
for small values ofn the two processes are identiddibr 06
example, compare the patterns for 1 or smaller, and also
note the very close similarity even far=3). In fact, the two g 04
patterns fon=1 in Figs. 3 and 5 are identical, although this
happens to be a coincidence of the particular realization. Dif:
ferent realizations show that the MTP for=1 contains oc- 0
casional overhangs, the probability of which is briefly dis- "
cussed below. As increases to larger values the difference
between directed and nondirected invasion increases, bot ®) (©
with respect to the invasion patterns and the resulting MTP 4
The close relation between nondirected and directed IPN 08
processes at small suggests that the MTP far=1 has %
properties similar to the optimal path of the DPRM. On the 2 s
other hand, the divergence of patterns and paths at larger 04
shows that this connection does not extend to arbitrar 10 0.2
threshold distributions, and specifically those involving rela-
tively largen (large threshold variance or large). We infer 0 05 ! 0
that the MTP coincides with the optimal path of the DPRM * ¢ ®
at smalln, but it differs from it at largemn.

-

0.6

\4

0.5 1

FIG. 6. Statistics of the enerdgos) distributionV, from simu-
lIl. CONNECTION TO GRADIENT PERCOLATION lations in a 10X 100 lattice:(a) The PDF at threg different va]ues
of x (equal to 0.25, 0.50, and 0.)/5b) the variation of the arith-
In essence, the IPM algorithm simulates an invasion permetic meanVv, with x, and(c) the variation of the standard devia-
colation process, in which the front advances by penetratingion, oV, with x.
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f(V,x)= %. (12)

Hereg is the distribution function, the precise form of which
is not important to this paper, and we have defined the nor-
malized variablel=[V—V(x)]/[oy (X)]. The functional
form (12) is consistent with the corresponding results for the
DPRM problem[16]. The variation of; with x is shown in
Fig. 6b). After a short transient, the mean is found to in-
crease linearly with distance, with a constant slapg,
which is closely related taC;. The latter also varies with
distance, to reflect the finite-size scaling anticipated ffthin
Analogous results are expected for the generedse, where
we havedV,/dx—C, . However, we expect that the ap-
proach to the limit is much slower at large and, in fact,
that at n— the transient lasts until breakthrough. The
variation of the mean with distance is consistent with the
corresponding result in the DPRM problem, whgté]

d{E) B
g%~ D1t Dax @3, (13

The variation of the standard deviatian, , is shown in Fig.

6(c). It is apparent that the variance increagatsleast for a
substantial fraction of the lattice lengttalthough its rate of
increase diminishes at larget, suggesting a power-law
variation with an exponent smaller than unity. We re€af]
that the corresponding DPRM problem has the scaling

FIG. 7. Grayscale plot of the perturbatian for n=1 from
X simulations in a 208200 lattice(a). (b) shows a Gaussian noise for
o~ Ll’zf(m> , (149 the same lattice. Darker colors correspond to smaller values.

where L is the lattice size and the functioh has the lation in an externally applied gradiefe.g., due to a body
asymptotic behaviorf ~x'3 for x<1 and f~const forx  force, such as gravity, or to a gradient in the bond iz&),

>1. By analogy, therefore, we expect a similar scaling fordiving rise to a percolation probability gradient measured by
the generah MTP problem the Bond numbeB. The invasion pattern has the fractal

properties of an IP cluster near the front over a scale equal to

X the front widtho g, but it occupies a compact region away
UVHNLX”fn L) (159  from it. The front width scales witlB as[7]
where the exponenjg, andz, may depend on and need to op~B M) (17)

be determined. This is not attempted here. In this paper, we

will proceed only with the assumption that<Qy,<1, as

suggested in the simulations. In passing, we note that previwherev is the OP correlation length exponent.

ously reported DPRM simulations pertaintie=1, and it is To investigate the connection to IPG, the properties of the

possible that the exponents of Eq$3) and (14) may also  perturbation/ are needed. Figure 7 shows a grayscale plot of

vary as a function oh. This problem also deserves further  obtained from simulations in a 26Q00 lattice. Also

attention. shown, for comparison, is a map of white noise on the same
From the above it is apparent thd, consists of a trans- lattice [Fig. 7(b)]. It is clear that the noise generated by the

verse average linearly increasing withand of a perturba- IPM is not an uncorrelated white noigas in standard I1PjG
tion, ¢, namely, but it is correlatedin space. For a more quantitative measure

of the correlation we constructed the variograms/ah the
V,=C X+, (16)  two different directiong9]. Both variograms displayed cor-
_ relations growing as a power law in space, similar to frac-
with =0 and witho, scaling as in Eq(15). In view of the  tional Brownian motion(fBm), with a positive Hurst expo-
previous, the ratio of the standard deviation to the mean mustent () [18]. For the casen=1, we foundH=0.32<0.5
decrease ag increases. The two facts that the transverseand H=0.41<0.5 in the respective directions. The Hurst
average ol increases withx and that the rule for the front exponent was found to steadily decrease with{for ex-
advance is to seek the minimukf,, suggests that IPM is ample,H=0.13 andH=0.19 in the respective directions for
closely related to IPG. We recall that IPG is invasion percon=>5, see[9]).



7184 HOOSHANG KHARABAF AND YANIS C. YORTSOS 55

1.4 T T o~ . ! 4
. w ‘.“.‘E‘:-..g:i:-;
. UL S
12} . 3
’7?,‘.". &
e T2
1 ¢ s
2 N\
% & 1
/-:0.8 B g"
& 0
3 0 0.5 1
0.6F T
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log(Bn) sinceC,, eventually approaches] (see below.

The identification of IPM with IPG allows us to express
FIG. 8. Log-log plot of the front widthre vs By, for different  the scaling of the front widthg, with the above-defined
lattice sizes and fon in the range(0,3). The straight line in the Bond number. Now, however, we must consider IPG in a
inset has a slope of-1. Comparison with the theoretical slope g re|ated lattice with growing correlations, as suggested in
—[v(v+1)], suggests that IPM is an IPG in a long-range correlatedciy 7 ‘pegpite this, the same arguments used for the conven-
field (v=c). tional IPG scaling(17) apply here as wellsee alsq19]),
except thatv should be the correlation length exponent cor-
The development of strong large-scale correlations atesponding to percolation in such a lattice. Percolation in
relatively smalln is expected from the definition of the in- |ong-range correlated lattices of the fBm type has been stud-
vasion rules. After the front has reached a steady-state meagd by Isichenkd 20] who showed that foH>0 the corre-
velocity, the perturbations of two adjacent sitdsand B |ation length exponent diverges—«. For IPG in such lat-
would satisfyys= o+ 7ag, if SitesA andB are along the tices, therefore, substitution in E(L7) leads to the scaling
y direction, oryig=a+ 7ag— L), if along thex direction
(and where we assumed that the pairs of sites are the growth og~B, 1 (20
site and its next to be occupied site, respectiv€lfen, it is
evident that the perturbations of adjacent sites are stronglyhe theoretical predictiori20) is tested in Fig. 8, which
correlated, and that this correlation diminishes with increasshows a plot of the front width, computed as[, vs the
ing n. However, this argument also shows that the correlaabove-defined bond number. The data at relatively I&ge
tion should be isotropic. We suspect that the anisotropyre fitted very well with a straight line of slopel, as indeed
found in[9] is due to the early transient. predicted from Eq(20). At smallerB, (largern), the slope
Using the above information we can establish a connecdecreases and eventually becomes zero, as the lateral lattice
tion between IPM and IPG. The connection to IPG is dem-size interferes with the procegas in IPG and the front
onstrated in Appendix B, where we show that after the earlyidth saturates.

transient, IPM is an IPG with a Bond number given by Equation(20) also allows us to relate the standard devia-
tion of V,, to that of the front. Substitution of E¢18) in Eq.
— 20) yields
4V 20y
dx T~ oy (Xe), (21)
B,=D¢ ———|., 18 n
" ¢ Uvn(XF) 18

which suggests that the ratio of the front width to the stan-

dard deviation ofV,, is constant. A plot of this ratio for a
where the constarid solves an algebraic equation depend-particular realization of IPM witm=1 is shown in Fig. 9. It
ing on the form of the scaling functiog. The two keys to js clear that after some early transients, the ratio fluctuates
this relationship is the assumed scalingwf, Eq.(12), and  around a constant value, as predicted from E{). This
the decay of the derivative afy with distance, Eq(15)  pehavior was also confirmed for other valuesipfalthough
(although for a 2D square lattice and a symmegritie latter  the transient period increases with Equation(21) indicates
condition is not necessary, see Appendix Bontrary to that the variation of the front width with distance follows the
conventional IPG, however, the above Bond number is nosame scaling as the standard deviationvgf, which was
constant but varies witlx, as a result of the variation of conjectured in Eq(15) to have a self-affine scaling. This
oy, Equation(18) can be further approximated as leads to the result
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where the functiorf has the same asymptotic scaling.

In summary, in this section we established a connection of
IPM with IPG, with two important twists: that in IPM the
probability gradient is generated dynamically during the pro-
cess instead of being externally specified; and, at least for
finite n, the process is one of gradient percolation iooa-
related field. We note that identical findings also apply for
the directed problem, hence a connection must exist between FIG. 11. The backbones of the dendritic branches, on which all
the DPRM problem and IPG in a correlated field. This con-invaded sites reside, originating from the right boundary for IPM

nection is worth exploring further. with (@) n=1 and(b) n= (site-occupancy, bond-invasion perco-
lation with bond trapping from simulations in a 108100 lattice.
IV. GENERAL RESULTS For n=1 the backbones appear self-affine and “parallel” to each

other. Note the single dominant branch for . The MTP forn
Using the preceding algorithm, various quantities of inter-=« corresponds to the backbone of the loopless IP and it is a
est can be calculated. In particular, we consider the MTP, theelf-similar fractal. Periodic boundary conditions were used in the
minimum gradient, and the MTP tortuosity. A study of the simulation.
distribution of thresholds can be found [ii]. All these re-
sults are for the nondirected case. Results for the directeg
problem will be reported in a future study.

elonging to different branches cannot be joined by any such
ath(except by a path that passes from the opigithe MTP

is part of the backbone of these branches, after dendritic
fractions are suppressed. Figure 11 shows the backbones of
Minimum threshold path the various branches at the breakthrough poininferl and

The MTP forn=1 is shown in Fig. 10 for invasion in a N=. In the first cas¢and also whein| is not largg, many
cubic lattice. Generalized MTPs for variablewere shown Parallel-like branches coexist, and the MTP is the part of the
in Fig. 3 These vary from a straight line for=0 to self- particular branch that has reached the opposite side. How-

o : . : ever, in the percolation limit{n|=c, a dominant branch
slmllar fraqtals fom=|x|. The increase " tortL_Josny as| develops. Bypdefinition this blralnch which is also the MTP
increases is due to the change of the invasion front fron?it the|n|=c5 limit, is th’e backbone ’Of the cluster of a site-

co_mpact to self-affine to self-.si.milar, as discussed above. Foéccupancy bond IP with bond trapping, obtained in the large
a finiten, therefore, and specifically far=1, we expect that In| limit. Therefore, in the general case, the MTP is unre-

the MTP is a self-affine curven the more general definition |4teq 10 a property of the percolation cluster. In particular,
of Feder[18], which also encompasses gradient percolationhe MTP forn=1 is not a self-similar fractal, but instead it
fronts) with a width that decreases a3 decreases. In par- js g member of a general family of self-afine curves that
tiCUlar, for SUfﬁCiently Smal'n|, the MTP coincides with the includes as a ||m|1(|arge |n|) the backbone of a site-bond
optimal path of DPRM. Agn|—, the MTP approaches a percolation cluster. Because, contrary to regular site or bond
specific limiting curve. To understand its properties we firstpercolation, this percolation process involvel®aplessper-
recall that for anyn, the invading phase resides on self- colation cluster, the MTP in that limit is alsol@aoplessfrac-
avoiding dendritic branches emanating from the right boundtal. It can be shown that the latter is a subset of the backbone
ary. These branches have the property that any two invadeaf the invasion cluster in conventional bond percolation, but
sites on the same branch can be joined by only one selft does not coincide with the conventional chemical distance
avoiding path consisting of invaded sites, while invaded site®f percolation[9].
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wherep, is the threshold to a percolation process in which
the front advances by invading the minimum threshold. A

0.6¢

§ 08B o ..................... 4 similar analysis holds for the opposite limit» — e, where
045 ° 1 the limit £_,—1—p, was also verified. In view of the re-
oal f lation between the moments for genemadnd general PDFs,
these results provide a qualitative picture of the dependence
o2r ° of the minimum sum of thresholds distributed from general
oaf 1 PDFs, on the ratio of the standard deviation to the arithmetic

mean.
We also note that’; is related to the slop€, of the
spatial variation of the mean for the following reasons: The

FIG. 12. The variation of the generalized minimum gradientarlthrmmc.meawn approaches the mean f, sampled over
L, with n. Note the asymptotic approach | and 1-p. asn all front sites. However, the Iat.ter also. approach‘xﬂs be-
approachess and —c, respectively. cause by construction, the maximum difference between any
two values ofV, at the front is bounded by maX=1.
. . Hence, for a sufficiently large lattice or a sufficiently small
In a recent paper, pointed to us by one of the FEeVIEWers, all values at the frontincluding the minimum sunc;)
Cieplak, Maritan, and Banav4R1] proposed a loopless IP "’ 9 ) n
similar to IPM forn=cc. They reported that the backbone is evgrtgall;ll m#St %row_gthth? f]ar?e rate. This ﬁoes not neces-
a self-similar fractal with fractal dimensioB =1.22 in 2D ﬁany 'mp %’.rt] atthe Wll th of the rrc])nt approac.esallc'onstﬁ_nt,
andD =1.42 in 3D. In agreement with our observations, they owever. Thus, we also expect the asymptotic relationship

also found that the geometry of this backbone is not the same
with that of the chemical distance on the percolation cluster. an

0 : . : L L L L s :
-100 -80 60 -40 -20 [ 20 40 60 80 100

n

Similar results are obtained for the optimal path of the g ~L], (25)
DPRM problem in the largin| limit, which can be shown to X
be the loopless backbone of the corresponding directed IP
cluster. The significance of the variation of the optimal pathfgr g n.
of the DPRM problem witm was commented in Sec. Il.
Minimum gradient Tortuosity of the MTP

Another quantity of significant interest is the generalized A final quantity of interest is the tortuosity of the MTP.
percolation threshold’,,, which in the cas@=1 reduces to We expect the tortuosity to be constant for a self-affine curve
the minimum gradientV®|,;,=L, . It was found that after and size dependent for a self-similar fractal. The variation of
some transients;; stabilizes to a mean value approximately the tortuosityt;, of the MTP withn=1 with lattice size was
equal to 0.305:0.01. The corresponding value for 3D cubic Studied in[9], where it was found that although fluctuating at
lattices was found to be 0.19.005. These compare well Smaller sizes, it approaches a constant value at large sizes,
with the respective values of 0.29 and 0.17, reported by Sdhe width of the fluctuations decreasing to zero. This adds
himi [2]. The value of 0.22 found by Roux and Herrmdah ~ Support to our observation on the self-affinity of the MTP.
in a square lattice tilted at 45° is also consistent with the"rom our simulations we found; =1.31+0.01 and 1.55
above, if we make the obvious transformation 0.8@5/ +0.02, for 2D square and 3D cubic lattices, respectively.
~0.22, to reflect the difference in the definition of length ~ These tortuosity data are new. The tortuosity of the general-
in the two problems. The latter results were also verified inzed MTP was found to increase with however, reflecting
[9] by additional simulations in a tilted 2600 lattice, the increased variance of the threshold distributisee(9]).
which gave the value of 0.2232. Since the tortuosity is not a universal property, it will be
shown in Fig. 12includingn<0). For positiven, this mea- A Simple, local, model for an arbitrary distribution of thresh-
sure is a monotonically increasing function nfand ap- ©lds can be obtained as follows. We recall that the tortuosity
proaches the limitZ,—p.=0.5, as anticipated by Roux Of the MTP reflects the advantage incurred to the path in
et al. [1]. Indeed, from definition, we have occasionally taking transverse steps that minimize the energy

cost. Figure 13 shows schematically some of the infinitely
0 n many possibilities, for the advancement of the path in one
Z Ti = Tm 1+i§ax €i increment in the directiorx. Denote byP, the probability of
the MTP taking a total ok steps in order to advance by a

L , single increment irx,
where the notation is self-evident and we have taken

=7/ Tmay. It follows that Pi=Pirm+rs+--+n1<7]; k=23,..., (26

- 7'nmax’ (23
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FIG. 13. Alternative pathways that can be taken by the MTP to

advance by one step in tixedirection(here from right-to-left The FIG. 14. The two alternative pathwaysolid and dashed lines,
possibilities of two step&), three stepgb), four stepsc), and five ~ respectively that can lead to the opening of bomf connecting
steps(d) and (e), are indicated. Note the backtrackirijover-  adjacent sites andj.

hang”) in (e).

MTP, can become open. The new paths that are formed are
where the values of are random thresholds from a given identified by the condition that the overall sum of thresholds
PDF. Then, the total path lengthis equal to on them exceeds the minimum potential difference but is

smaller than or equal to the applied. We proceed by identi-

. fying the sequence of paths with progressively higher en-
I=L 1+i222w wi(i—1)Pi, (27) ergy. Only the threshold across a bond is considered to con-
tribute to the cost across an open bandmely, there is no
where w; is the number of different configurations corre- flow-induced potential drop, as would be for example the
sponding to a given number of steffer examplews=2 in  case in the flow of a Bingham plasticThe new paths can be
Fig. 13. Given a PDF, the various probabilities above can becompletely new paths, unrelated to the MTP or other open
computed. In particular, for the case of a uniform PDF inpaths, or they may share with them some of their bonds. In
(0,1), which is also the previous=1 case, we can compute the latter case, an open path could act as a bridge between

the probabilities of Eq(26) to find [9] two already open paths, it may form a loop with one path, or
it may connect one end of the lattice to a point of an already
P— 1 29) open path. The algorithm to find such paths must simulta-

K (k+ 1)1 neously identify the path and also determine its calse

necessary potential gradient to make it gpénis described
For the tortuosity of the path requires that the weightde  in the following. For simplicity, the discussion will be re-
computed. For the square lattice configuration of Fig. 13stricted to then=1 case, the generalization to other values
wo=wz=w,=1, butws=2, etc. Configurations of a larger of n being straightforward.
number of steps have largev;, but substantially smaller We recall that at the conclusion of IPM, a vaMgwhere
probability. If, as an approximation, we takg=1 for all  the subscriptn was omitted is assigned to every invaded
i, we obtain the resutt; ~4—e=1.282, which is reasonably site, that denotes the minimum overall threshold from the
close to the numerical value given above. The discrepancy isite to the right-hand sidéRHS) boundary of the lattice.
due to the assumption made. Inclusion of path multiplicity,Consider, next, another IPM process, now from the left side,
which increases witl, will lead to an improved agreement. through which another functiow, is assigned to each site,
This simple model can be used to investigate the effect othat denotes the minimum overall threshold from the site to
the MTP tortuosity of more general PDE3], or to estimate the LHS boundary of the lattice. The minimum potential
the probability of an overhang in a patuch as depicted in - ®;; needed to open a bond between two adjacent lattice sites
Fig. 13e), for examplé. i andj (see Fig. 13 must be the minimum of the cost of the
two alternative pathways, namely,
V. HIGHER-COST PATHS
q)|]:m|n(V|+T|J+WJ ,VJ+T|J+W|) (29)

In many applications, such as the flow of Bingham plas-
tics and foams in porous media,3,23, the behavior follow- Hence, from a knowledge of the functiol'sandW at every
ing the onset of flow or displacement is of significant inter-site, the minimum potential to open a given bodg; , can
est. In this context, the identification of paths of higher costbe computed.
(energy than the MTP is necessary. This problem also arises Having assignedp, the algorithm proceeds sequentially
in the DPRM case, where patterns reminiscent of river deltarom low to high energies by identifying the candidate bonds
were found[5]. In this section, we use the IPM algorithm to belonging to the next open path. Figure 15 shows the open-
identify these paths as the applied potential difference acrodag of the various paths as the potential difference increases.
the lattice increases. We note, again, that contrary to thAs expected, the first such path is the MTP. The successive
DPRM problem, where all paths originate from a singleopening of new paths is apparent in the model. These form
point, here the paths can originate from many differentcorrelated pathway regionévalleys, which are different
points on the injection face. than the paths of OP. The successive opening of pathways

When the applied potential gradient exceeds the minimunteads to “flooded” regions of increasing width analogous to
|[VO|>|VD| i, additional bonds, not belonging to the the “river deltas” of the DPRM problem. Based on these
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FIG. 17. Snapshot of unstable IPM with trapping, from simula-
tions in a 10100 lattice. The pattern is a SAW constrained to
occur on the LHS of the rightmost boundary.

Fig. 16 were used ifi22] to model the fraction of flowing
foam in porous media.

VI. UNSTABLE PROCESSES
FIG. 15. Representation of the open paths as the applied poten-

tial increases at different stages) MTP, (b) one-third, (c) two- In the above, we studied stable IPM. We can extend the
thirds, and(d) three-thirds of all possible open paths, for a 100 study to “unstable” invasion processes, where the thresh-
%100 lattice. olds are viewed as gains, rather than penalties, and where

instead of minimizing the cumulative threshdlatenalty we

results, the fraction of bonds belonging to open paths vs thE1aximize the cumulative gain. Thus, the rule for the advance
applied potential gradient can be computed. Figure 16 showl the front would maximize, instead of minimizing, the
the results obtained. After the minimum gradient, the fracMeasures,. The corresponding algorithm is trivially imple-
tion of open bonds increases following &kshape curve. Mented. A typical snapshot of such processes from simula-
The curve has percolationlike characteristics, in that there {§0ns in a 2D lattice is shown in Fig. 17, where a trapping
a thresholdC,, but it is not actually related to percolation, "Ule was implemented. In the case of trapping, the invading
except in the limit of largen. In fact, the scaling of the curve Phase consists of a singly connected self-similar thread of
(for n=1) near the threshold, was shown by Reebal. [1] sites. Contrary to the previous case, the front is a self-similar

to be a power law with exponent equal to 2. The results offactal and was found to be identical for all _
In the case of trapping, we can show that this path of

maximum gain is a self-avoiding random wdlRAW) con-

1 strained to take place to the right of the invasion boundary.
Indeed, by construction, the growth site is always the tip of
osr the front, the site to be invaded next being the on& efl
08l neighbordwhereZ is the coordination number of the lattjce
’ with the largest value ofg ., . This process can be equiva-
0.7 lently simulated by randomly advancing the tip to one of its
neighboring unoccupied sites. The resulting path has the
g 081 SAW properties. Because of the trapping rule, however, the
§0 path obtained is not the global maximum, which would ob-
2 St viously consist here of a path that covers the entire laft€e
570'4_ dimension 2. Properties of SAW have been extensively dis-
cussed in previous referenc3|.
03} The difference in the invasion fronts as we switch from
minimizing the penalty to maximizing the gain is similar to
0.2} 1 the change from IPG in a stabilizing gradient to IPG in a
destabilizing gradient in percolation procesg24]. The rule
0.1r of minimizing the cumulative penalty stabilizes the propaga-
‘ , ‘ ' . ' tion of the front, in contrast to the rule of maximizing the
88 oz o2 o2 02 o0z 03 0@ cumulative gain, which creates a great degree of instability.

[vvi A similarity can also be drawn between anti-diffusion-
limited aggregation anti-DLA compact fronts and DLA frac-
FIG. 16. The fraction of open bonds as a function of the appliedtal fronts[10], which characterize viscous stable and viscous
gradient forn=1 from simulations in a 4840x40 lattice. unstable, respectively, displacements in porous media.
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VII. CONCLUSIONS

Motivated by the problem of finding the path that mini-
mizes the sum of thresholds in a lattice of elements with
thresholdsr;, randomly distributed ir{0,1), we developed a

class of invasion processes, in which the front advances by A ¢ ~
minimizing or maximizing the measui®,==; 7', wheren

is a real number. Because this rule assigns long-time G

memory to the invasion front, these processes belong to a -
new class of inversion percolation with memdi?M). De- L

pending on whether the rule minimizes or maximi&gs the
invasion fronts are either stable and self-affinpase of mini-
mum penalty or unstable and fractalcase of maximum
gain). The stable case was connected to IPG but in a
correlated lattice with self-affine correlations of the fBm type
(positive Hurst exponenjtl8]), with IP [25] recovered in the

limit |n|=co. In the unstable case, the IPM process WaSsllowing breakthrough, and by also removing the trappin
found to be a SAW, for anp. These processes also include rule g an, y 9 ppIng

as a special case thsimples} problem of DPRM[5], by To prove our assertion, we usereduction in absurdio

restricting the invasion to one direction. An important differ- ) . .

; : . argument: Assume that there exists another alternative path,
ence is that the IPM algorithm leads to optimal paths that Call anoted asc* in Fig. 18. and consider the first siBeon path
originate from any point along a curve. 9. 26, b

The algorithm is well suited for the identification of mini- eﬁr;titWh\I/\(/:: 22?1 tgiep?r:?ss Sf:;:t t?)lvk?erg:i,ée\/\?ltr??ﬁ:zss (I)nsi'?een-
mum MTP that minimize the sum ofl' across any two i bp

. . Wi n ly the argument for If the minimum
curves(as well as from any site to a given cujvé&or the case, we can apply the argument for $telf the u

corresponding DPRM problem, the MTP becomes the op,[i_threshold path fronB is the MTP determined from the IPM

. ; algorithm, then, by extension, pathfrom A will also be the
g?fl_g?fmeoﬂgpgm’r;\;hﬁg flc\)/lr_rtgew(;asm; (EIJ-\’NII’? tl;n(r);\:]n éof:‘fm MTP). For future use, we consider the invasion stage when
: c-ng ' N . 9 ite A becomes invaded for the first time. In the notation of
straight line in the case ai=0 to a multifaceted curve at

small n to a self-similar fractal in the largi| limit. The the text, at that time sité will be denoted as sit€”. By

latter is the backbone of a mixed site-bond percolation ClusgonstrucUon, the valud/(A) assigned o it corresponds to

.. n .
ter, and differs from the standard backbone of OP in that it "€ minimum vqlue OS”»FF’:Vn(F_)JF Tepr» fOr every site
does not contain reconnectiofisis loopless. Its properties F 0n the invasion front at that time. By the same token,
were recently studied ifi21]. The MTP forn=1, corre- Vn(A) must also be larger than the valig(l) assigned to
sponding to the classical problem, is not a self-similar fractafll invaded sites (including the front sitefs prior to this
and does not coincide with the minimum path of OP. Instead{ime, since in the opposite case, skewould have been

it is very closely related to the optimal path of DPRM and invaded at an earlier time. Hence, we have the inequalities
appears to be self-affine. The dependence of the MTR on
raises questions about the universality of the corresponding
optimal path of the DPRM problem, when distributions with . . .
a large variance are considered. Various results on the MTT @ll sites at the front. Furthermore, the second inequality
the minimum gradient and the path tortuosity were obtained®/S© implies

In particular, the algorithm allows the identification of paths
of higher energycosy, which generalize the “river deltas”
of the DPRM problem.

FIG. 18. Schematic of the various alternative minimum thresh-
old paths from sitéA to the RHS boundary. Path is the MTP of
IPM, while £* is the hypothetical alternative.

Va(F)<V(A)<Vy(F)+ e, (A1)

Via(A)<Vi(1") (A2)

for all sitesl’ invaded following the invasion of sit&. The
corresponding MTRpath £ in Fig. 18 connectingA to the
RHS boundary is traced with the use of the IPM algorithm as

This work was supported in part by U.S. DOE Contractdiscussed in the text. In particular, this path contains the
No. DE-FG22-93BC14899, the contribution of which is PONdAG, whereG is the growth site foR.
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gratefully acknowledged. Assume, now, that pati* is the MTP. This implies that
the sum of thresholds along this path is equal to a new value,
APPENDIX A V7 (A), where
Proving thatV,(A) represents the minimum sum of Vi (A)<V,(A) (A3)

thresholds from sité\ to the injection boundary, is equiva-

lent to proving that the minimum threshold path fronto  and that siteG* on £* adjacent toA has also assigned to it
the injection boundary is the MTP determined algorithmi-a valueVy (G*), such that

cally using the IPM proceséath £ in Fig. 18. First, we

recall that through the IPM algorithnajl sites in the lattice Vi (A)=V}(G*)+ T”G*A, (A4)
can be invaded, and thus be assigned a unique Wlue

This can be accomplished by continuing the invasion procesghere
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VE(G*) <V, (G*). (A5)  Where as is well known from the theory of gradient percola-
tion [7], p is equal to the percolation threshofa,. Hence,

Inequality(A5) follows from the fact that in the reverse case, _
we would haveV} (A)>V,(A), due to(Al) and (A4), in _ VM_V(XF))
case sitegG* was a front site at the time si#® was invaded, Pe= ov(Xg) |’
or due to(A2), in caseG* was invaded after sité. By
comparing(A3) and (A5) it follows that to prove the exis- This is an algebraic equation with respect to the argument,
tence of a path aA alternative to the MTP determined from the solution of which leads to an expression ¥y . By
the IPM algorithm, requires to prove the same for e,  denoting its root byd., we find
By induction, therefore, the problem is reduced to proving
the validity of inequality(A3) for the first ever siteA in-
vaded. But this is not possible, since for such a sitdA)
represents by construction the minimum threshold adjace
to the injection face. It follows that inequalitig®\5) and _ =
(A3) are not valid, thus, the MTP determined from the IPM read -~ G(¢)=1/2(1+erf 0.) and - pc= 1/_2[1+erf(VM
algorithm is the path that minimizes the sum of thresholds, as V(xe))ov(xe)], respectively, and where; is the root of

claimed. $(1+erf 6.)=p.. (B7)

(B5)

Vi = ov(Xg) O+ V(Xe). (B6)

As an example, we may take a Gaussian distribution,
Yr which the expressions corresponding (84) and (B5)

APPENDIX B In the latter case, we also have,=0, or §.= —0.48 for a
2D square or a 3D cubic lattice, respectively. We note that

Consider bond invasion percolation in a field\6lvalues o yoqitg, =0 is also valid for all 2D square lattices with

(where we have omitted subscriptfor simplicity), with the

. eveng.
following PDF Now, we can substitut¢B6) in (B3) and expand in a
9(6) Taylor series around the mean front position to obtain
f(V,x)= , (B1)  around the front
ay(X)

=p.—B(Xx—xg)+ O (x—x¢)?], BS
where g is a function of the normalized variablé=[V P=Pc—B( 2 3 2 (B8)

—V(x)]/[oy(x)]. Conventionally, in IP the front advances where the Bond numbeB is equal to
by penetrating the perimeter bond with the smallest value of

V. Let the mean front position at a given stage of the process d_V @
be xg, and assume that the bond to be invaded next has the ) X dx
valueV),. Then, we can assign to any positigna perco- B=G'(6.) er O o | (B9)
lation probability fractionp VTR VIE
iy which for a Gaussian, also reads
IO(X)=f f(V,x)dV, (B2) _
0 dv dO'V
_p? Ay Ay
which, in view of (B1) can be simplified to B= exp(— 0;) dx +0 2 (B10)
— N ov(Xg) ¢ oy ,:
Vu—V(X)
p(x)~G YO (B3)  Thus, if we further assume thad (noy, )/(dx) decreases with
X to zero, the second term in the RHS inside the brackets
Here we defined becomes negligible at large hence
o dv
G(o)= fﬁ 9(7)d7 (B4) T
B~D¢; ——|, B11
L ovixe) (BLD

and also assumed thak is sufficiently large for

V(x)/ay(x)>1 [since at largex, oy grows slower than whereD.=G’(6,). This relationship is exact fof.=0.5,
V(x)]. Now, (B3) also applies at the mean front position, for example for even PDF’s in a square lattice.
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